
Problem T1. Focus on sketches (13 points)
Part A. Ballistics (4.5 points)

i. (0.8 pts) When the stone is thrown vertically upwards, it

can reach the point x = 0, z = v2
0/2g (as it follows from the

energy conservation law). Comparing this with the inequality

z ≤ z0 − kx2 we conclude that

z0 = v2
0/2g. [0.3 pts]

Let us consider the asymptotics z → −∞; the trajectory of

the stone is a parabola, and at this limit, the horizontal dis-

placement (for the given z) is very sensitive with respect to the

curvature of the parabola: the flatter the parabola, the larger

the displacement. The parabola has the flattest shape when

the stone is thrown horizontally, x = v0t and z = −gt2/2, i.e.

its trajectory is given by z = −gx2/2v2
0 . Now, let us recall

that z ≤ z0 − kx2, i.e. −gx2/2v2
0 ≤ z0 − kx2 ⇒ k ≤ g/2v2

0 .

Note that k < g/2v2
0 would imply that there is a gap between

the parabolic region z ≤ z0 − kx2 and the given trajectory

z = −gx2/2v2
0 . This trajectory is supposed to be optimal for

hitting targets far below (z → −∞), so there should be no such

a gap, and hence, we can exclude the option k < g/2v2
0 . This

leaves us with

k = g/2v2
0 . [0.5 pts]

ii. (1.2 pts) Let us note that the

stone trajectory is reversible and due

to the energy conservation law, one

can equivalently ask, what is the min-

imal initial speed needed for a stone

to be thrown from the topmost point

of the spherical building down to the

ground without hitting the roof, and what is the respective tra-

jectory. It is easy to understand that the trajectory either needs

to touch the roof, or start horizontally from the topmost point

with the curvature radius equal to R. Indeed, if neither were

the case, it would be possible to keep the same throwing angle

and just reduce the speed a little bit — the stone would still

reach the ground without hitting the roof. Further, if it were

tangent at the topmost point, the trajectory wouldn’t touch

nor intersect the roof anywhere else, because the curvature of

the parabola has maximum at its topmost point. Then, it

would be possible to keep the initial speed constant, and in-

crease slightly the throwing angle (from horizontal to slightly

upwards): the new trajectory wouldn’t be neither tangent at

the top nor touch the roof at any other point; now we can re-

duce the initial speed as we argued previously. So we conclude

that the optimal trajectory needs to touch the roof somewhere,

as shown in Fig.

iii. (2.5 pts) The brute force approach would be writing down

the condition that the optimal trajectory intersects with the

building at two points and touches at one. This would be de-

scribed by a fourth order algebraic equation and therefore, it is

not realistic to accomplish such a solution within a reasonable

time frame.

Note that the interior of the building needs to lie inside the

region where the targets can be hit with a stone thrown from

the top with initial speed vmin. Indeed, if we can throw over

the building, we can hit anything inside by lowering the throw-

ing angle. On the other hand, the boundary of the targetable

region needs to touch the building. Indeed, if there were a

gap, it would be possible to hit a target just above the point

where the optimal trajectory touches the building; the traject-

ory through that target wouldn’t touch the building anywhere,

hence we arrive at a contradiction.

So, with v0 corresponding to the optimal trajectory, the tar-

getable region touches the building; due to symmetry, overall

there are two touching points (for smaller speeds, there would

be four, and for larger speeds, there would be none). With the

origin at the top of the building, the intersection points are

defined by the following system of equations:

x2 + z2 + 2zR = 0, z =
v2

0

2g
−

gx2

2v2
0

.

Upon eliminating z, this becomes a biquadratic equation for x:

x4

(

g

2v2
0

)2

+ x2

(

1

2
−

gR

v2
0

)

+

(

v2
0

4g
+ R

)

v2
0

g
= 0.

Hence the speed by which the real-valued solutions disappear

can be found from the condition that the discriminant vanishes:
(

1

2
−

gR

v2
0

)2

=
1

4
+

gR

v2
0

=⇒
gR

v2
0

= 2.

Bearing in mind that due to the energy conservation law, at

the ground level the squared speed is increased by 4gR. Thus

we finally obtain

vmin =
√

v2
0 + 4gR = 3

√

gR

2
.

Part B. Mist (4 points)

i. (0.8 pts) In the plane’s reference frame, along the channel

between two streamlines the volume flux of air (volume flow

rate) is constant due to continuity. The volume flux is the

product of speed and channel’s cross-section area, which, due

to the two-dimensional geometry, is proportional to the channel

width and can be measured from the Fig. Due to the absence of

wind, the unperturbed air’s speed in the plane’s frame is just v0.

So, upon measuring the dimensions a = 10 mm and b = 13 mm

(see Fig), we can write v0a = ub and hence u = v0
a
b
. Since at

point P , the streamlines are horizontal where all the velocities

are parallel, the vector addition is reduced to the scalar addi-

tion: the air’s ground speed vP = v0 − u = v0(1 − a
b
) = 23 m/s.

ii. (1.2 pts) Although the dynamic pressure 1

2
ρv2 is relatively

small, it gives rise to some adiabatic expansion and compres-

sion. In expanding regions the temperature will drop and hence,

the pressure of saturated vapours will also drop. If the dew

point is reached, a stream of droplets will appear. This process

will start in a point where the adiabatic expansion is maximal,

i.e. where the hydrostatic pressure is minimal and consequently,

as it follows from the Bernoulli’s law p + 1

2
ρv2 = const, the dy-

namic pressure is maximal: in the place where the air speed in
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wing’s frame is maximal and the streamline distance minimal.

Such a point Q is marked in Fig.

iii. (2 pts) First we need to calculate the dew point for the air

of given water content (since the relative pressure change will

be small, we can ignore the dependence of the dew point on

pressure). The water vapour pressure is pw = psar = 2.08 kPa.

The relative change of the pressure of the saturated vapour is

small, so we can linearize its temperature dependence:

psa − pw

Ta − T
=

psb − psa

Tb − Ta

=⇒ Ta − T = (Tb − Ta)
(1 − r)psa

psb − psa

;

numerically T ≈ 291.5 K. Further we need to relate the air

speed to the temperature. To this end we need to use the en-

ergy conservation law. A convenient ready-to-use form of it is

provided by the Bernoulli’s law. Applying this law will give

a good approximation of the reality, but strictly speaking, it

needs to be modified to take into account the compressibility

of air and the associated expansion/contraction work. Con-

sider one mole of air, which has the mass µ and the volume

V = RT/p. Apparently the process is fast and the air par-

cels are large, so that heat transfer across the air parcels is

negligible. Additionally, the process is subsonic; all together

we can conclude that the process is adiabatic. Consider a seg-

ment of a tube formed by the streamlines. Let us denote the

physical quantities at its one end by index 1, and at the other

end — by index 2. Then, while one mole of gas flows into

the tube at one end, as much flows out at the other end. The

inflow carries in kinetic energy 1

2
µv2

1 , and the outflow carries

out 1

2
µv2

2 . The inflowing gas receives work due to the pushing

gas equal to p1V1 = RT1, the outflowing gas performs work

p2V2 = RT2. Let’s define molar heat capacities CV = µcV and

Cp = µcp. The inflow carries in heat energy CV RT1, and the

outflow carries out CV RT2. All together, the energy balance

can be written as 1

2
µv2 + CpT = const. From this we can

easily express ∆ v2

2
= 1

C
v2

crit(
a2

c2 − 1) = cp∆T , where c is the

streamline distance at the point Q, and further

vcrit = c

√

2cp∆T

a2 − c2
≈ 23 m/s,

where we have used c ≈ 4.5 mm and ∆T = 1.5 K. Note that

in reality, the required speed is probably somewhat higher, be-

cause for a fast condensation, a considerable over-saturation is

needed. However, within an order of magnitude, this estimate

remains valid.

Part C. Magnetic straws (4.5 points)

i. (0.8 pts) Due to the superconduct-

ing walls, the magnetic field lines cannot

cross the walls, so the flux is constant

along the tube. For a closed contour in-

side the tube, there should be no circu-

lation of the magnetic field, hence the

field lines cannot be curved, and the field

needs to be homogeneous. The field lines

close from outside the tube, similarly to a solenoid.

ii. (1.2 pts) Let us consider the change of the magnetic energy

when the tube is stretched (virtually) by a small amount ∆l.

Note that the magnetic flux trough the tube is conserved: any

change of flux would imply a non-zero electromotive force dΦ

dt
,

and for a zero resistivity, an infinite current. So, the induc-

tion B = Φ

πr2 . The energy density of the magnetic field is B2

2µ0

.

Thus, the change of the magnetic energy is calculated as

∆W =
B2

2µ0

πr2∆l =
Φ2

2µ0πr2
∆l.

This energy increase is achieved owing to the work done by the

stretching force, ∆W = T∆l. Hence, the force

T =
Φ2

2µ0πr2
.

iii. (2.5 pts) Let us analyse, what would be the change of

the magnetic energy when one of the straws is displaced to a

small distance. The magnetic field inside the tubes will remain

constant due to the conservation of magnetic flux, but outside,

the magnetic field will be changed. The magnetic field out-

side the straws is defined by the following condition: there is

no circulation of ~B (because there are no currents outside the

straws); there are no sources of the field lines, other than the

endpoints of the straws; each of the endpoints of the straws is

a source of streamlines with a fixed magnetic flux ±Φ. These

are exactly the same condition as those which define the elec-

tric field of four charges ±Q. We know that if the distance

between charges is much larger than the geometrical size of

a charge, the charges can be considered as point charges (the

electric field near the charges remains almost constant, so that

the respective contribution to the change of the overall electric

field energy is negligible). Therefore we can conclude that the

endpoints of the straws can be considered as magnetic point

charges. In order to calculate the force between two magnetic

charges (magnetic monopoles), we need to establish the corres-

pondence between magnetic and electric quantities.

For two electric charges Q separated by a distance a, the

force is F = 1

4πε0

Q2

a2 , and at the position of one charge, the elec-

tric field of the other charge has energy density w = 1

32π2ε0

Q2

a4 ;

hence we can write F = 8πwa2. This is a universal expression

for the force (for the case when the field lines have the same

shape as in the case of two opposite and equal by modulus elec-

tric charges) relying only on the energy density, and not related

to the nature of the field; so we can apply it to the magnetic
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field. Indeed, the force can be calculated as a derivative of

the full field energy with respect to a virtual displacement of

a field line source (electric or magnetic charge); if the energy

densities of two fields are respectively equal at one point, they

are equal everywhere, and so are equal the full field energies.

As it follows from the Gauss law, for a point source of a fixed

magnetic flux Φ at a distance a, the induction B = 1

4π
Φ

a2 . So,

the energy density w = B2

2µ0

= 1

32π2µ0

Φ
2

a4 , hence

F =
1

4πµ0

Φ2

a2
.

For the two straws, we have four magnetic charges. The lon-

gitudinal (along a straw axis) forces cancel out (the diagonally

positioned pairs of same-sign-charges push in opposite direc-

tions). The normal force is a superposition of the attraction

due to the two pairs of opposite charges, F1 = 1

4πµ0

Φ
2

l2 , and

the repulsive forces of diagonal pairs, F2 =
√

2

8πµ0

Φ
2

2l2 . The net

attractive force will be

F = 2(F1 − F2) =
4 −

√
2

8πµ0

Φ2

l2
.
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Problem T2. Kelvin water dropper (8 points)
Part A. Single pipe (4 points)

i. (1.2 pts) Let us write the force balance for the droplet.

Since d ≪ r, we can neglect the force π
4

∆pd2 due to the excess

pressure ∆p inside the tube. So, the gravity force 4

3
πr3

maxρg

is balanced by the capillary force. When the droplet separates

from the tube, the water surface forms in the vicinity of the

nozzle a “neck”, which has vertical tangent. In the horizontal

cross-section of that “neck”, the capillary force is vertical and

can be calculated as πσd. So,

rmax = 3

√

3σd

4ρg
.

ii. (1.2 pts) Since d ≪ r, we can neglect the change of the

droplet’s capacitance due to the tube. On the one hand, the

droplet’s potential is ϕ; on the other hand, it is 1

4πε0

Q
r

. So,

Q = 4πε0ϕr.

iii. (1.6 pts) Excess pressure inside the droplet is caused by

the capillary pressure 2σ/r (increases the inside pressure), and

by the electrostatic pressure 1

2
ε0E2 = 1

2
ε0ϕ2/r2 (decreases the

pressure). So, the sign of the excess pressure will change, if
1

2
ε0ϕ2

max/r2 = 2σ/r, hence

ϕmax = 2
√

σr/ε0.

The expression for the electrostatic pressure used above can

be derived as follows. The electrostatic force acting on a surface

charge of density σ and surface area S is given by F = σS · Ē,

where Ē is the field at the site without the field created by the

surface charge element itself. Note that this force is perpen-

dicular to the surface, so F/S can be interpreted as a pressure.

The surface charge gives rise to a field drop on the surface equal

to ∆E = σ/ε0 (which follows from the Gauss law); inside the

droplet, there is no field due to the conductivity of the droplet:

Ē − 1

2
∆E = 0; outside the droplet, there is field E = Ē + 1

2
∆E,

therefore Ē = 1

2
E = 1

2
∆E. Bringing everything together, we

obtain the expression used above.

Note that alternatively, this expression can be derived by

considering a virtual displacement of a capacitor’s surface and

comparing the pressure work p∆V with the change of the elec-

trostatic field energy 1

2
ε0E2∆V .

Finally, the answer to the question can be also derived from

the requirement that the mechanical work dA done for an in-

finitesimal droplet inflation needs to be zero. From the en-

ergy conservation law, dW + dW
el

= σ d(4πr2) + 1

2
ϕ2

max dCd,

where the droplet’s capacitance Cd = 4πε0r; the electrical work

dW
el

= ϕmaxdq = 4πε0ϕ2
maxdr. Putting dW = 0 we obtain an

equation for ϕmax, which recovers the earlier result.

Part B. Two pipes (4 points)

i. (1.2 pts) This is basically the same as Part A-ii, except

that the surroundings’ potential is that of the surrounding

electrode, −U/2 (where U = q/C is the capacitor’s voltage)

and droplet has the ground potential (0). As it is not defined

which electrode is the positive one, opposite sign of the po-

tential may be chosen, if done consistently. Note that since

the cylindrical electrode is long, it shields effectively the en-

vironment’s (ground, wall, etc) potential. So, relative to its

surroundings, the droplet’s potential is U/2. Using the result

of Part A we obtain

Q = 2πε0Urmax = 2πε0qrmax/C.

ii. (1.5 pts) The sign of the droplet’s charge is the same as

that of the capacitor’s opposite plate (which is connected to

the farther electrode). So, when the droplet falls into the bowl,

it will increase the capacitor’s charge by Q:

dq = 2πε0UrmaxdN = 2πε0rmaxndt
q

C
,

where dN = ndt is the number of droplets which fall during

the time dt This is a simple linear differential equation which

is solved easily to obtain

q = q0eγt, γ =
2πε0rmaxn

C
=

πε0n

C
3

√

6σd

ρg
.

iii. (1.3 pts) The droplets can reach the bowls if their mech-

anical energy mgH (where m is the droplet’s mass) is large

enough to overcome the electrostatic push: The droplet starts

at the point where the electric potential is 0, which is the sum of

the potential U/2, due to the electrode, and of its self-generated

potential −U/2. Its motion is not affected by the self-generated

field, so it needs to fall from the potential U/2 down to the po-

tential −U/2, resulting in the change of the electrostatic energy

equal to UQ ≤ mgH, where Q = 2πε0Urmax (see above). So,

Umax =
mgH

2πε0Umaxrmax

,

∴ Umax =

√

Hσd

2ε0rmax

= 6

√

H3gσ2ρd2

6ε3
0

.
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Problem T3. Protostar formation (9 points)
i. (0.8 pts)

T = const =⇒ pV = const

V ∝ r3

∴ p ∝ r−3 =⇒
p(r1)

p(r0)
= 23 = 8.

ii. (1 pt) During the period considered the pressure is negli-

gible. Therefore the gas is in free fall. By Gauss’ theorem and

symmetry, the gravitational field at any point in the ball is

equivalent to the one generated when all the mass closer to the

center is compressed into the center. Moreover, while the ball

has not yet shrunk much, the field strength on its surface does

not change much either. The acceleration of the outermost

layer stays approximately constant. Thus,

t ≈

√

2(r0 − r2)

g

where

g ≈
Gm

r2
0

,

∴ t ≈
√

2r2
0(r0 − r2)

Gm
=

√

0.1r3
0

Gm
.

iii. (2.5 pts) Gravitationally the outer layer of the ball is in-

fluenced by the rest just as the rest were compressed into a

point mass. Therefore we have Keplerian motion: the fall of

any part of the outer layer consists in a halfperiod of an ultra-

elliptical orbit. The ellipse is degenerate into a line; its foci are

at the ends of the line; one focus is at the center of the ball (by

Kepler’s 1st law) and the other one is at r0, see figure (instead

of a degenerate ellipse, a strongly elliptical ellipse is depicted).

The period of the orbit is determined by the longer semiaxis of

the ellipse (by Kepler’s 3rd law). The longer semiaxis is r0/2

and we are interested in half a period. Thus, the answer is

equal to the halfperiod of a circular orbit of radius r0/2:

(

2π

2tr→0

)2
r0

2
=

Gm

(r0/2)2
=⇒ tr→0 = π

√

r3
0

8Gm
.

Alternatively, one may write the energy conservation law
ṙ2

2
− Gm

r
= E (that in turn is obtainable from Newton’s

II law r̈ = − Gm
r2 ) with E = − Gm

r0

, separate the variables

( dr
dt

= −
√

2E + 2Gm
r

) and write the integral t = −
∫

dr√
2E+ 2Gm

r

.

This integral is probably not calculable during the limitted

time given during the Olympiad, but a possible approach can

be sketched as follows. Substituting
√

2E + 2Gm
r

= ξ and
√

2E = υ, one gets

t∞

4Gm
=

∫ ∞

0

dξ

(υ2 − ξ2)
2

=
1

4υ3

∫ ∞

0

[

υ

(υ − ξ)2
+

υ

(υ + ξ)2
+

1

υ − ξ
+

1

υ + ξ

]

dξ.

Here (after shifting the variable) one can use
∫

dξ
ξ

= ln ξ and
∫

dξ
ξ2 = − 1

ξ
, finally getting the same answer as by Kepler’s laws.

iv. (1.7 pts) By Clapeyron–Mendeleyev law,

p =
mRT0

µV
.

Work done by gravity to compress the ball is

W = −
∫

p dV = −
mRT0

µ

∫ 4

3
πr3

3

4

3
πr3

0

dV

V
=

3mRT0

µ
ln

r0

r3

.

The temperature stays constant, so the internal energy does not

change; hence, according to the 1st law of thermodynamics, the

compression work W is the heat radiated.

v. (1 pt) The collapse continues adiabatically.

pV γ = const =⇒ TV γ−1 = const.

∴ T ∝ V 1−γ ∝ r3−3γ

∴ T = T0

(r3

r

)3γ−3

.

vi. (2 pts) During the collapse, the gravitational energy is con-

verted into heat. Since r3 ≫ r4, The released gravitational en-

ergy can be estimated as ∆Π = −Gm2(r−1
4 −r−1

3 ) ≈ −Gm2/r4

(exact calculation by integration adds a prefactor 3

5
); the ter-

minal heat energy is estimated as ∆Q = cV
m
µ

(T4 − T0) ≈
cV

m
µ

T4 (the approximation T4 ≫ T0 follows from the result

of the previous question, when combined with r3 ≫ r4). So,

∆Q = R
γ−1

m
µ

T4 ≈ m
µ

RT4. For the temperature T4, we can use

the result of the previous question, T4 = T0

(

r3

r4

)3γ−3

. Since

initial full energy was approximately zero, ∆Q + ∆Π ≈ 0, we

obtain

Gm2

r4

≈
m

µ
RT0

(

r3

r4

)3γ−3

=⇒ r4 ≈ r3

(

RT0r3

µmG

)
1

3γ−4

.

Therefore,

T4 ≈ T0

(

RT0r3

µmG

)

3γ−3

4−3γ

.

Alternatively, one can obtain the result by approximately

equating the hydrostatic pressure ρr4
Gm
r2

4

to the gas pressure

p4 = ρ
µ

RT4; the result will be exactly the same as given above.
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Problem T1. Focus on sketches (13 points)

Part A. Ballistics (4.5 points)

i. (0.8 pts)

z0 = v2

0/2g

k = g/2v2

0

ii. (1.2 pts) The sketch of the trajectory:

iii. (2.5 pts)

vmin = 3

√

gR

2
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Part B. Air flow around a wing (4 points)

i. (0.8 pts)

vP = 23 m/s

ii. (1.2 pts) Mark on this fig. the point Q. Use it also for taking measurements (questions i and iii).

Formulae motivating

the choice of point Q: av = const

p +
1

2
ρv2 = const

p1−γT γ = const

iii. (2.0 pts)

Formula: vcrit = c

√

2cp∆T

a2 − c2

Numerical: vcrit ≈ 23 m/s
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Part C. Magnetic straws (4.5 points)

i. (0.8 pts)

Sketch here five

magnetic field lines.

ii. (1.2 pts)

T =
Φ2

2µ0πr2

iii. (2.5 pts)

F =
4 −

√
2

8πµ0

Φ2

l2
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Problem T2. Kelvin water dropper (8 points)

Part A. Single pipe (4 points)

i. (1.2 pts)

rmax = 3

√

3σd

4ρg

ii. (1.2 pts)

Q = 4πε0ϕr

iii. (1.6 pts)

ϕmax = 2
√

σr/ε0

Part B. Two pipes (4 points)

i. (1.2 pts)

Q0 = 2πε0qrmax/C

ii. (1.5 pts)

q(t) = q0eγt, γ =
πε0n

C
3

√

6σd

ρg
.

iii. (1.3 pts)

Umax = 6

√

H3gσ2ρd2

6ε3
0
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Problem T3. Protostar formation (9 points)

i. (0.8 pts)

n = 8

ii. (1 pt)

t2 ≈

√

0.1r3

0

Gm

iii. (2.5 pts)

tr→0 = π

√

r3
0

8Gm

iv. (1.7 pts)

Q =
3mRT0

µ
ln

r0

r3

v. (1 pt)

T (r) = T0

(r3

r

)3γ−3

vi. (2 pts)

r4 ≈ r3

(

RT0r3

µmG

)
1

3γ−4

T4 ≈ T0

(

RT0r3

µmG

)

3γ−3

4−3γ
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