
THEORETICAL PROBLEM No. 3 

 

WHY ARE STARS SO LARGE? 

 

The stars are spheres of hot gas. Most of them shine because they are fusing hydrogen 

into helium in their central parts. In this problem we use concepts of both classical and 

quantum mechanics, as well as of  electrostatics and thermodynamics, to understand 

why stars have to be big enough to achieve this fusion process and also derive what 

would be the mass and radius of the smallest star that can fuse hydrogen. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Our Sun, as most stars, shines 

as a result of thermonuclear fusion of 

hydrogen into helium in its central 

parts. 

USEFUL CONSTANTS 

Gravitational constant = 11107.6 −×=G  m
3
 kg

-1
 s
2 

Boltzmann´s constant = 23104.1 −×=k J K
-1 

Planck’s constant = 34106.6 −×=h  m
2
 kg s

-1
 

Mass of the proton = 27107.1 −×=pm kg 

Mass of the electron = 31101.9 −×=em kg 

Unit of electric charge = 19106.1 −×=q C 

Electric constant (vacuum permittivity) = 12

0 109.8 −×=ε  C
2 
N
-1 
m

-2 

Radius of the Sun = 8100.7 ×=SR m 

Mass of the Sun = 30100.2 ×=SM kg 



 

 

 

 

1. A classical estimate of the temperature at the center of the stars. 

 

Assume that the gas that forms the star is pure ionized hydrogen (electrons and protons 

in equal amounts), and that it behaves like an ideal gas. From the classical point of view, 

to fuse two protons, they need to get as close as 1510− m for the short range strong 

nuclear force, which is attractive, to become dominant. However, to bring them together 

they have to overcome first the repulsive action of Coulomb’s force. Assume classically 

that the two protons (taken to be point sources) are moving in an antiparallel way, each 

with velocity
rmsv , the root-mean-square (rms) velocity of the protons, in a one-

dimensional frontal collision.  

 

1a  What has to be the temperature of the gas,
cT , so that the distance of 

closest approach of the protons, cd , equals 1510− m? Give this and all 

numerical values in this problem up to two significant figures. 

1.5 

 

  

2. Finding that the previous temperature estimate is wrong. 

To check if the previous temperature estimate is reasonable, one needs an independent 

way of estimating the central temperature of a star. The structure of the stars is very 

complicated, but we can gain significant understanding making some assumptions. Stars 

are in equilibrium, that is, they do not expand or contract because the inward force of 

gravity is balanced by the outward force of pressure (see Figure 2). For a slab of gas the 

equation of hydrostatic equilibrium at a given distance r from the center of the star, is 

given by 
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where P is the pressure of the gas, G  the gravitational constant, rM the mass of the star 

within a sphere of radius r , and rρ is the density of the gas in the slab.  

 



  

 

An order of magnitude estimate of the central temperature of the star can be obtained 

with values of the parameters at the center and at the surface of the star, making the 

following approximations: 

co PPP −≈∆ , 

where cP  and oP  are the pressures at the center and surface of the star, respectively. 

Since oc PP >> , we can assume that 

cPP −≈∆ . 

Within the same approximation, we can write 

Rr ≈∆ , 

where R is the total radius of the star, and 

MMM Rr =≈ , 

with M the total mass of the star. 

The density may be approximated by its value at the center, 

cr ρρ ≈ . 

You can assume that the pressure is that of an ideal gas. 

2a Find an equation for the temperature at the center of the star, cT , in terms 

of the radius and mass of the star and of physical constants only. 

0.5 

 

 

Figure 2. The stars 

are in hydrostatic 

equilibrium, with the 

pressure difference 

balancing gravity. 



We can use now the following prediction of this model as a criterion for its validity: 

  

2b Using the equation found in (2a) write down the ratio RM /  expected for 

a star in terms of physical constants and 
cT only.  

0.5 

 

2c Use the value of  cT  derived in section (1a) and find the numerical value 

of the ratio RM /  expected for a star.  

0.5 

 

2d Now, calculate the ratio )(/)( SunRSunM , and verify that this value is 

much smaller than the one found in (2c). 

0.5 

 

3. A quantum mechanical estimate of the temperature at the center of the 

stars 

 

The large discrepancy found in (2d) suggests that the classical estimate for cT obtained 

in (1a) is not correct. The solution to this discrepancy is found when we consider 

quantum mechanical effects, that tell us that the protons behave as waves and that a 

single proton is smeared on a size of the order of pλ , the de Broglie wavelength. This 

implies that if
cd , the distance of closest approach of the protons is of the order of pλ , 

the protons in a quantum mechanical sense overlap and can fuse.  

 

3a 
 Assuming that 

2/12

p

cd
λ

=  is the condition that allows fusion, for a proton 

with velocity rmsv , find an equation for cT in terms of physical constants 

only. 

1.0 

 

3b  Evaluate numerically the value of cT obtained in (3a).  0.5 

 

3c  Use the value of  cT  derived in (3b) to find the numerical value of the 

ratio RM /  expected for a star, using the formula derived in (2b). Verify 

that this value is quite similar to the ratio )(/)( SunRSunM  observed.  

0.5 

 

Indeed, stars in the so-called main sequence (fusing hydrogen) approximately do follow 

this ratio for a large range of masses. 

 

 



4. The mass/radius ratio of the stars. 

 

The previous agreement suggests that the quantum mechanical approach for estimating 

the temperature at the center of the Sun is correct.  

 

4a  Use the previous results to demonstrate that for any star fusing hydrogen, 

the ratio of mass M to radius R is the same and depends only on physical 

constants. Find the equation for the ratio RM / for stars fusing hydrogen.  

0.5 

 

5. The mass and radius of the smallest star. 

The result found in (4a) suggests that there could be stars of any mass as long as such a 

relationship is fulfilled; however, this is not true.  

The gas inside normal stars fusing hydrogen is known to behave approximately as an 

ideal gas. This means that ed , the typical separation between electrons is on the average 

larger that eλ , their typical de Broglie wavelength. If closer, the electrons would be in a 

so-called degenerate state and the stars would behave differently. Note the distinction in 
the ways we treat protons and electrons inside the star. For protons, their de Broglie 

waves should overlap closely as they collide in order to fuse, whereas for electrons their 

de Broglie waves should not overlap in order to remain as an ideal gas.   

The density in the stars increases with decreasing radius. Nevertheless, for this order-of-

magnitude estimate assume they are of uniform density. You may further use that 

ep mm >> . 

 

5a  Find an equation for en , the average electron number density inside the 

star. 

0.5 

 

5b  Find an equation for ed , the typical separation between electrons inside 

the star. 

0.5 

 

5c 
 Use the 

2/12

e
ed

λ≥  condition to write down an equation for the radius of 

the smallest normal star possible. Take the temperature at the center of the 

star as typical for all the stellar interior.  

1.5 

 



 

 

6. Fusing helium nuclei in older stars. 

 

As stars get older they will have fused most of the hydrogen in their cores into helium 

(He), so they are forced to start fusing helium into heavier elements in order to continue 

shining. A helium nucleus has two protons and two neutrons, so it has twice the charge 

and approximately four times the mass of a proton. We saw before that 
2/12

p

cd
λ

= is the 

condition for the protons to fuse.  

 

6a  Set the equivalent condition for helium nuclei and find )(Hevrms , the rms 

velocity of the helium nuclei and )(HeT , the temperature needed for 

helium fusion.  

0.5 

 

5d  Find the numerical value of the radius of the smallest normal star 

possible, both in meters and in units of solar radius.  

0.5 

5e  Find the numerical value of the mass of the smallest normal star possible, 

both in kg and in units of solar masses.  

0.5 


