
Answers 

Theoretical Problem No. 3 

 

Why are stars so large? 

1) A first, classic estimate of the temperature at the center of the stars. 

 

1a We equate the initial kinetic energy of the two protons to the electric 

potential energy at the distance of closest approach: 
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          2) Finding that the previous temperature estimate is wrong.  

 

2a Since we have that 
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, making the assumptions given above, we obtain that: 
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 , where k  is Boltzmann´s constant, cT  is the central 

temperature of the star, and pm  is the proton mass. The factor of 2 in the 

previous equation appears because we have two particles (one proton and 

one electron) per proton mass and that both contribute equally to the 

pressure. Equating the two previous equations, we finally obtain that: 
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2b From section (2a) we have that: 
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2c From section (2b) we have that, for 9105.5 cT K:  
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2d For the Sun we have that: 
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       3) A quantum mechanical estimate of the temperature at the center of the stars 

 

3a We have that 
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3b 
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3c From section (2b) we have that, for 6107.9 cT K:
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        4) The mass/radius ratio of the stars. 

 

4a Taking into account that 0.5 
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5) The mass and radius of the smallest star. 
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5c We assume that 
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5e The mass to radius ratio is: 
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6) Fusing helium nuclei in older stars. 

 

6a For helium we have that 
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This value is of the order of magnitude of the estimates of stellar models. 
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