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Theoretical Question 1: Ping-Pong Resistor

1. Answers
1 y?
(a) FR :_EﬂRngF
727_2
(b) X==6
2med
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2. Solutions
(a) [1.2 points]
The charge O induced by the external bias voltage /* can be obtained by applying

the Gauss law:

—

50§E-d§

0 (al)

Q:goE-(;sz):go[gj-(sz), (a2)

where V =FEd.

The energy stored in the capacitor:

V 4 Vr 1 VZ
U=|0(V"dV'=|g,aR*| — |dV' ==&, R’ —. a3
! o) j : ( dj ek~ (a3)
The force acting on the plate, when the bias voltage V' is kept constant:
ou 1 V2
LF =t — =g R —. a4
Y ad 2" 4 (&4)

[An alternative solution:]

Since the electric field E' acting on one plate should be generated by the other plate

and its magnitude is

E'= lE _ , (as5)
2 2d
the force acting on the plate can be obtained by
F, =0F". (a6)

(b) [0.8 points]
The charge ¢ on the small disk can also be calculated by applying the Gauss law:

goﬁ-dg:q. (b1)

Since one side of the small disk is in contact with the plate,
2

q:—gOE-(mz)z—go%V:;(V. (b2)
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2
. : ar
Alternatively, one may use the area ratio for g = —( 5 jQ .

2

r
.'.12—807. (b3)

(¢) [0.5 points]
The net force, F

net >

acting on the small disk should be a sum of the gravitational and

electrostatic forces:

Fo=F+F.. (cl)

The gravitational force: F, =-mg .

The electrostatic force can be derived from the result of (a) above:

2
F. :%go%rﬂ :%Vz. (c2)

In order for the disk to be lifted, one requires F, ., >0:

net

Xy e >0, (c3)

2d

v, = [Pmed (c4)
Ve
(d) [2.3 points]

Let v, be the steady velocity of the small disk just after its collision with the bottom

plate. Then the steady-state kinetic energy K of the disk just above the bottom plate

is given by

K, = lmVS2 . (d1)

2

For each round trip, the disk gains electrostatic energy by

AU =2qV . (d2)
For each inelastic collision, the disk lose its kinetic energy by

1
AI<lcoss = Kbefore - Kafter = (1 - nz)Kbefore = (? - leafter . (d3)

Since K, is the energy after the collision at the bottom plate and (K, +¢qV —mgd) 1is
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the energy before the collision at the top plate, the total energy loss during the round trip
can be written in terms of K_:

AK =(%—1st+(1—772)(Ks+qV—mgd)- (d4)

In its steady state, AU should be compensated by AK

2qV=(L2_1jKS+(1—n2)(KS +qV —mgd). (d5)
n

Rearranging Eq. (d5), we have

772
K= [a+n)qV +1=1")mgd]

2 2
:(lﬁnzqu+(lf772 ]mgd (d6)

Therefore,

ST -

Comparing with the form:

v, =+al’+ 2, (d3)

a=(1’72 j(z—;‘j ﬂ{ i 2](2gd). (d9)
-n m I+7

[An alternative solution:]

Let v, be the velocity of the small disk just after n-th collision with the bottom plate.
Then the kinetic energy of the disk just above the bottom plate is given by
K, :lmvi . (d10)
2
When it reaches the top plate, the disk gains energy by the increase of potential energy:
AU, =qV —mgd . (dI1)

Thus, the kinetic energy just before its collision with the top plate becomes

1
K =Emvip =K, +AU,, . (d12)

n—up
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Since 7=V .. / Vi » the kinetic energy after the collision with the top plate becomes

scaled down by a factor of 77:

K, =n""K, - (d13)

n—up

Now the potential energy gain by the downward motion is:
AU =qV +mgd (d14)

so that the kinetic energy just before it collides with the bottom plate becomes:

down

=K' +AU

n—down n—up down *

K (d15)

Again, due to the loss of energy by the collision with the bottom plate, the kinetic
energy after its (n+1) -th collision can be obtained by

K, . :772 K, _down
=117 (K, + AU o)
=" (" (K, +AU ) + AU ) (d16)
=0’ (* (K, +qV —mgd) +qV +mgd)
="K, +n*(1+n")qV +n°(1-n")mgd.

. . 1
As n — o, we expect the velocity v, — v, thatis, K, > K = Emvf :

1
K, =—— A+ 5")qV +7°(~n* ymgd]

S 1_774

2 2

n Ui
= V+ mgd d17
(l_nzjq (an] g (d17)

(e) [2.2 points]
The amount of charge carried by the disk during its round trip between the plates is
AQ =2¢q, and the time interval At =t +t¢_, where ¢, (¢ ) is the time spent during the

up- (down-) ward motion respectively.
Here ¢, (¢_) can be determined by

Vol +la+tf =d
2
(el)

\na +%at2 =d

where v, (v,_) is the initial velocity at the bottom (top) plate and a, (a_) is the up-
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(down-) ward acceleration respectively.

Since the force acting on the disk is given by

F:mai:qumg:%img, (e2)
in the limit of mgd <<qV ', a, can be approximated by
¢ =a —a ~1" (e3)
md

which implies that the upward and down-ward motion should be symmetric. Thus,
Eq.(el) can be described by a single equation with ¢, =t =t , v,=v, =v,, and
a,=a, =a_. Moreover, since the speed of the disk just after the collision should be

the same for the top- and bottom-plates, one can deduce the relation:

Vs = U(Vs + aOtO ) H (64)
from which we obtain the time interval Af¢ =2z,

At=2t, = 2(“—”]3 . (e5)

n Ja,
From Eq. (d6), in the limit of mgd << qV , we have
| n’
K. =—mv, = V. e6
s =MV (1 e jq (e6)

By substituting the results of Egs. (e3) and (e6), we get

2 2 2
ar=2| 1) [ 21 md” _, [1=7 2’”‘[2 . (€7)
n )\Nl=n"\ qV I+n\ 2V
AQ _2q
At At°

2 3
1=y M0 2V W0 2 e (e8)
At 1-n\2md 1-n\2md
7 1-n\ 2md’

Therefore, from [ =

[Alternative solution #1:]

Starting from Eq. (e3), we can solve the quadratic equation of Eq. (el) so that
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\% 2da

R ) e (e10)
a Vor

When it reaches the steady state, the initial velocities v,, are given by

V0+:Vs (ell)

2d
Vo =1 (v, +agt,) =nv, 1+ D, (e12)
VS

where v, can be rewritten by using the result of Eq. (e6),

2 2
v: zaV:(I?nzjziV =(li7772j2a0d, (el3)

As a result, we get VO_;UVS-l:VS and consequently ¢, =£(1—1j, which is
n ag\1

equivalent to Eq. (e4).

[Alternative solution #2:]

The current / can be obtained from
;o249 _2qv
At d

where Vv is an average velocity. Since the up and down motions are symmetric with the

, (el4)

same constant acceleration in the limit of mgd << gV,

v:l(vs+£) (e15)
2 n
Thus, we have
=411 (e16)
2d n

Inserting the expression (Eq. (el5)) of v, into Eq. (e16), one obtains an expression

identical to Eq. (e8).

(f) [3 points]
The disk will lose its kinetic energy and eventually cease to move when the disk can not

reach the top plate. In other words, the threshold voltage V., can be determined from

the condition that the velocity v, of the disk at the top plate is zero, i.e., v, =0.

In order for the disk to have v, =0 at the top plate, the kinetic energy K, at the
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top plate should satisfy the relation:
K. =K, +qV.-mgd =0, (f1)

where K_ is the steady-state kinetic energy at the bottom plate after the collision.

Therefore, we have

n’ n’
T laVe+ 7 [mgd +qV, —mgd =0, (f2)
-7 l+7
or equivalently,
(1+7n7)qV, —(1=n")mgd =0. (f3)
22
gV, =+ mgd ()
l+7

From the relation g = yV_,

_ 2
= T /”Lgd. (5)
I+ \ x

In comparison with the threshold voltage ¥V, of Eq. (c4), we can rewrite Eq. (f5) by
Vc = Zthh (f6)
where z_ should be used in the plotof / vs. (V/V,) and

_ | 1-7
ZC_/20+UG. (7)

[Note that an alternative derivation of Eq. (fl) is possible if one applies the energy
compensation condition of Eq. (d5) or the recursion relation of Eq. (d17) at the top
plate instead of the bottom plate.]

Now we can setup equations to determine the time interval Ar=¢ +1¢, :

' +%a_tf =d (f3)

Vmg+%mﬁ=d (f9)

where the accelerations are given by

qv. 1-7° -2’
a = c _ = —1 = flo
Y md & [1+772 & 1+7? & (f10)
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qV. 1-7° 2
a = c + — +1 = fll
- md & L+7]2 & 1+7° & (f11)
D g2 (f12)
a

Since v, =0, wehave v, =7n(a_t ) and > =2d/a_.

t_:\/gz /(1+772)(1J, (f13)
a g

By using v, =7°(2da_)=-2da, , we can solve the quadratic equation of Eq. (f9):

2
fo=Yorl fpp2dan p)_ Voo [2d (“27 j(ij:t_—, (f14)
a, Vo a, |a+| n g n

SCAt=t o+t :(Hl] (1+772(1J (f15)

n g

A 20 24V 2ml-n?
[:gz_qzzc— /) n g@_

N N N (+pA+7D)

(f16)

I A

I~y
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[A more elaborate Solution:]

One may find a general solution for an arbitrary value of V.

equations of Egs. (8) and (19), we have

2
t+:V°*|:—l+ 1+ dzai}.
a. Vo

(It is noted that one has to keep the smaller positive root.)

To simplify the notation, we introduce a few variables:

() y=- where ¥, = |28
Vi X
.. 1-n? . .
(i) z, = |———-, which is defined in Eq. (f7),
20+7n7)
(iif) wy =27.~5% and w, =2 —
1-7n 1-n")g
Interms of y, w,and z_,
V
a, =1 —g=g@y*-1)
md

a =ﬂ+g=g(2y2 +1)
md

_ _ 2 2
VO+_VS_W0\)y +Zc

By solving the quadratic

(f17)

(f18)

(f19)

(f20)

Voo =n(v +a,t,)=wyly' -z (f21)

Ny -zt -yt 42

I, =w

+

2y° —1

(f22)

t

2y% +1

w R N

(f21)
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_AQ 2 y _ N8mgdy
=2V ) =—=X—=2F 22)
At t, +t Cx th)At W, ) (
where

F(y)—y{vyz i AT R ”W‘Zf} (£23)

2y° -1 2y° +1
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3. Mark Distribution

No. Tg:jdl Pei)rgal Contents
(a) 1.2 0.3 Gauss law, or a formula for the capacitance of a parallel plate
0.5 Total energy of a capacitor at E'=electrical field by the other
y plate
0.4 | Force from the energy | F/'=QF'
expression
(b) 0.8 0.3 Gauss law Use of area ratio and result of (a)
0.5 Correct answer
(© 0.5 0.1 Correct lift-up condition with force balance
0.2 Use of area ratio and result of (a)
0.2 Correct answer
(d) 2.3 0.5 Energy conservation and the work done by the field
0.5 Loss of energy due to collisions
0.8 Condition for the steady state: Condition for the steady state:
energy balance equation (loss = recursion relation
gain)
0.5 Correct answer
(e) 2.2 0.2 | AQ=2g pertrip
0.5 Acceleration a, in the limit of ¢V >>mgd ; a,=a_ by
symmetry
0.3 | Kinetic equations for d, v, By using the symmetry, derive
a,and ¢, solutions for ¢,
0.4 | Expression of v,, and f, in the relation (e4)
its steady state
0.4 | Solutions of t, in
approximation
0.4 Correct answer
® 3.0 0.5 Condition for V,; Kup =0 or | Using (d8), Recursion relations
V. =0
0.3 energy balance equation
0.3 Correct answer of V,
0.7 Kinetic equations for At
0.3 Correct answer of [,
0.9 | Distinction between V, and V_,
the asymptotic behavior 7 =7V* in plots
Total 10




