

| Country Code | Student Code |
|--------------|--------------|
|              |              |
|              |              |
|              |              |

## **Answer Form**

## PART-A

| 1. | Suggest | and | justify, | by | using | equations, | a | method | allowing | to | obtain | $m \times l$ . | (2.0) |
|----|---------|-----|----------|----|-------|------------|---|--------|----------|----|--------|----------------|-------|
|    | points) |     |          |    |       |            |   |        |          |    |        |                |       |

2. Experimentally determine the value of  $m \times l$ . (2.0 points)

 $m \times l =$  \_\_\_\_\_\_ .



| Country Code | Student Code |
|--------------|--------------|
|              |              |
|              |              |
|              |              |

## PART-B

1. Measure v for various values of h. Plot the data on a graph paper in a form that is suitable to find the value of m. Identify the slow rotation region and the fast rotation region on the graph. (4.0 points)

(On a separate graph paper)

2. Show from your measurements that  $h = Cv^2$  in the slow rotation region, and  $h = Av^2 + B$  in the fast rotation region. (1.0 points)

(In the plot above)

3. Relate the coefficient C to the parameters of the MBB. (1.0 points)



| Country Code | Student Code |
|--------------|--------------|
|              |              |
|              |              |
|              |              |

4. Relate the coefficients A and B to the parameters of the MBB. (1.0 points)



| Country Code | Student Code |
|--------------|--------------|
|              |              |
|              |              |
|              |              |

5. Determine the value of m from your measurements and the results obtained in PART-A. (3.0 points)



| Student Code |
|--------------|
|              |
|              |
|              |

## PART-C

| 1. | Measure the periods $T_1$ and $T_2$ of small oscillation shown in Figs. 3 (1) and (2) and |
|----|-------------------------------------------------------------------------------------------|
|    | write down their values, respectively. (1.0 points)                                       |

| $T_1 =$ |  |  |
|---------|--|--|
|         |  |  |

2. Explain, by using equations, why the angular frequencies  $\omega_1$  and  $\omega_2$  of small oscillation of the configurations are different. (1.0 points)



| Country Code | Student Code |
|--------------|--------------|
|              |              |
|              |              |
|              |              |

3. Evaluate  $\Delta l$  by eliminating  $I_0$  from the previous results. (1.0 points)



| Student Code |  |  |  |
|--------------|--|--|--|
|              |  |  |  |
|              |  |  |  |
|              |  |  |  |

4. Write down the value of the effective total spring constant k of the two-spring system. (2.0 points)

5. Obtain the respective values of  $k_1$  and  $k_2$ . Write down their values. (1.0 points)

$$k_1 = \underline{\hspace{1cm}}$$
 .

$$k_2 =$$
 \_\_\_\_\_\_\_.