Solution to Theoretical Question 2

A Piezoelectric Crystal Resonator under an Altengga¥oltage

Part A
(a) Refer to Figure Al. The left face of the rod moaedistance/At while the pressure wave
travels a distanceAt with u =.,/Y/ p . The strain at the left face is

S===—=— (Ala)
From Hooke’s law, the pressure at the left face is
p:—YS:Y% = puv (Alb)
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(b) The velocityv is related to the displacemeétas in a simple harmonic motion (or a
uniform circular motion, as shown in Figure A2)asfgular frequencya = ku . Therefore,

if £(x,t) =&y sink(x—ut) , then
V(x,t) = —kué, cosk(x —ut). (A2)
The strain and pressure are related to velocity 8oblem (a). Hence,

S(x,t) = =v(x,t)/u = kéy cosk(x —ut) (A3)

p(x,t) = puv(x,t) = —kpu?&y cosk(x - ut)

(A4)
= -YS(x,t) = —-KY&, cosk(x —ut)

Alternatively, the answers may be obtained by deff¢iations: +X
v(xt) = %f = _ku&, cosk(x—ut)
S(xt) = %{ = k&g cosk(x —ut), Figure A2
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p(x,t) = _YK = —kYé&y cosk(x—ut) .




Part B

(c) Since the angular frequeney and speed of propagatienare given, the wavelength is
given byA = 277/ k with k = w/ u. The spatial variation of the displaceméns therefore
described by

g(x) = Blsink(x—gj+ B, cosk(x—gj (B1)

Since the centers of the electrodes are assumms dtationaryg(b/2) = 0. This leads t8,
= 0. Given that the maximum gfx) is 1, we havd; = +1 and

g(x) = isin%)[x—g) (B2)
Thus, the displacement is

E(x,t) = +2¢, sin%(x—%} coswt (B3)

(d) Since the pressuge(or stress') must vanish at the end faces of the quartz slehX=0
andx = b), the answer to this problem can be obtained, riatagy, from the resonant
frequencies of sound waves in an open pipe of kebgHowever, given that the centers
of the electrodes are stationary, all even harnsooicthe fundamental tone must be
excluded because they have antinodes, rather dasnof displacement at the bisection
plane of the slab.

Since the fundamental tone has a wavelength 2b, the fundamental frequency is
given by f; =u/(2b) . The speed of propagatiors given by

0
u= \ﬁ = M = 545x10° m/s (B4)
Y 265x10
and, given thal =1.00<10% m, the two lowest standing wave frequencies are
f, = 5 273(kHz), f3=3f; b 818(kHz) (B5)

[Alternative solution to Problems (c) and (d)]:

A longitudinal standing wave in the quartz slab hatisplacement node =t b/2. It
may be regarded as consisting of two waves traydlinopposite directions. Thus, its
displacement and velocity must have the followiogrf

&(x,t) = Em{sink(x —g— utj + sink[x —g + utﬂ

(B6)
=2¢, sink(x - gj coswt

v(x,t) = —kufm{cosk(x _b_ utj - cosk(x b + utﬂ
2 2
(B7)

=20k, sink(x—gjsinwt
where w = ku and the first and second factors in the squarekbta represent waves
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traveling along the xand x directions, respectively. Note that Eq. (B6) ieritical to Eq.
(B3) if we seté, = £&o.

For a wave traveling along the direction, the velocity must be replaced by-n
Egs. (Ala) and (Alb) so that we have

= _TV and p=puv (waves traveling alongx- (B8)

S :% and p=-puv (waves traveling along- (B9)
As in Problem (b), the strain and pressure areetbeg given by
S(x,t) = —kfm{— cosk[x —g - utj - cosk(x —g + utﬂ

(B10)
= 2ké,, cosk(x - gj coswt

p(x,t) =-p uwfm{cosk(x —g - utj + cosk(x —g + utﬂ
(B11)
=-2puak,, cosk(x - gj coswt

Note thatv, S, andp may also be obtained by differentiatié@s in Problem (b).
The stresg or pressure must be zero at both ends<{ 0 andx = b) of the slab at all
times because they are free. From Eqg. (B11), shp®ssible only itoskb/2) =0or

_ @y 27 -
kb—ub— T b=nr, n=135, (B12)
In terms of wavelengtii, Eq. (B12) may be written as
A=%b, n=135,-. (B13)
The frequency is given by
_u_nu_n ¥ =
f= 1 =% 2b\/;' n=1235-:--. (B14)

(e) From Egs. (5a) and (5b) in the Question, the pilentec effect leads to the equations
T=Y(S-d,E) (B15)

d2
o=Yd S+ gT[l—Y—”JE (B16)

.
Becausex = b/2 must be a node of displacement for any longialdstanding wave in the

slab, the displacemegtand strairS must have the form given in Egs. (B6) and (B1@), i.
with & = ku,

&(x,t) =€, sink[x—%}cos(ngo) (B17)
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S(x,t) = k&, cosk(x - gj cos(t + ¢) (B18)

where a phase constapis now included in the time-dependent factors.
By assumption, the electric fieElbetween the electrodes is uniform and depends only

on time:
V(t) _V,,coswt

E(xt) = hoo h (B19)
Substituting Egs. (B18) and (B19) into Eq. (B15§ kave
d
T= Y{kfm cosk(x - gj cos(wt + ¢) — " —V, coswt} (B20)

The stres§ must be zero at both endsH 0 andx = b) of the slab at all times because they

are free. This is possible onlygf= 0 and
ke, cosL =g Vn (B21)
2 Ph
Sinceg = 0, Egs. (B16), (B18), and (B19) imply that theface charge density must have

the same dependence on ti@d may be expressed as

o(x,t) = og(x)cosawt (B22)
with the dependence orgiven by
o(x) =Yd k¢, cosk(x - gj +& [1— Y S‘_EJVWm
” ] a2\ Iy (B23)
=Y pkb cosk(x —Ej + gT(l—YE—"] Fm
cos? T

(H At timet, the total surface chardg@(t) on the lower electrode is obtained by integrating
o(x,t)in Eqg. (B22) over the surface of the electrode. idsailt is

QM) _ 1
V() V()0

_I [Y

J( )de——j o(x)wdx

d2
cosk(x— )+£T (L-Y —5)]dx
co&2 &

(B24)
d2 d?
:(ETb_Wj Y—(it kbj 1-Y -+
h kb 2 &
2 kb
=C —tan— |+ (1-«a
{ (kb 2) ( )}
where
d2 2 ~2
Co=&r bw a’=yY-2 :(225)—><10 =982x10° (B25)
h' & 127x 406

(The constantr is called theslectromechanical coupling coefficient.)
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Note: The resultCo= £rbw/h can readily be seen by considering the statia kwi O
of Eq. (5) in the Question. Sinta x = X whenx << 1, we have

klimoQ(t) IV(t) = Cola® + 1-a?)] =C, (B26)

Evidently, the constart, is the capacitance of the parallel-plate capaédoned by the
electrodes (of arelaw) with the quartz slab (of thicknebsand permittivityst) serving as
the dielectric medium. It is therefore given &ybw/h.
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Marking Scheme

Theoretical Question 2

A Piezoelectric Crystal Resonator under an Altenggatoltage

Total Sub Marking Scheme for Answers to the Problem
Scores Scores
Part A @) The strainSand pressurp on the left face.
> 0.4 for Nd| = vAt and¢ = uAt.
4.0 pts 1.6 » 0.4 forS= -vlu. (0.1 for sign)
» 0.4 for relatingp to Sasp = -YS (0.1 for sign)
» 0.4 forp=puv. (0.1 for sign)
(b) The velocityv(x, t), strain§x, t), and pressurp(x, t).
» 0.3x3 sinusoidal variation with correct phase const@h® for phas
2.4 constant.)
» 0.3x3 for amplitude.
» 0.2x3 for dependence onandt as kx- ku t).
Part B () The functiong(x) for a standing wave of angular frequeny
» 0.4 forg(b/2) = 0.
6.0pts 1.2 |» 0.3+0.1 forB;==1 (0.1 for both signs)
» 0.4forB,=0
(d) The two lowest standing wave frequencies.
» 0.2 for wavelength of fundamental toae 2b.
1.2 |» 0.2 for excluding even harmonics.
» (0.3+0.1) forf; =u/2b = 273kHz. (0.1 for value)
» (0.3+0.1) forfz = 3u/2b = 818kHz. (0.1 for value)
(e) The surface charge densityas a function ok andt.
» 0.1x2 for £ andS, each a separable functionxodndt.
2.2 |» 0.1x2 for f£andS, each depends on time as casvith ¢ = 0.
» 0.3 for spatial parté(x) = ¢, sink(x—b /2)
» 0.3 for spatial partS(x) = ké,,,cosk(x—b /2)
» 0.3 for T(x) =[k¢, cosk(x=b/2)-d Vv, /h]Y.
» 0.3 for k¢, coskb/2)=dV, /h.
» 0.6 forD4 (0.3) andD; (0.3) ing(x).
() |The constant&, anda?.
14 » 0.2 for relation betweeaandQ as

Q(t) = (jg o(X)wdx) cosadt.

» 0.3 for notingQ(t)/V(t) = Cpask — 0.
» 0.4 forCy=&tbw/h.
» 0.4+0.1 fora® =Yd /&, = 982x10°. (0.1 for value)
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