Solution to Theoretical Question 1

A Swing with a Falling Weight
Part A

(@) Since the length of the string. = s+ R#@ is constant, its rate of change must be zero.
Hence we have
$+RO=0 (AL)
(b) Relative toO, Q moves on a circle of radil&with angular velocityd, so
V, =ROt =-st (A2)
(c) Refer to Fig. Al. Relative tdQ, the displacement of in a time interval At
is AF' =(SAG)(—F) + (As)t =[(s8)(~F) + st]At. It follows

V' = -sOf + st (A3)

Figure Al

(d) The velocity of the particle relative @ is the sum of the two relative velocities given in
Egs. (A2) and (A3) so that

V=V +V, = (-sOf +5t) + ROt = —sOf (A4)
Q

(e) Refer to Fig. A2. The ¢f)-component of the velocity chand® is given
by (=t) [V = vA@ = vOAt. Therefore, thé-component of the acceleratioa = AV/At
is given by £ [A=-v@ . Since the speedof the particle issé according to Eq. (A4),
we see that thef -component of the particle’s acceleratiorPas given by

ald =-v0=—-(s8)8=-s6° (A5)
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Figure A2
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(f)

Note that, from Fig. A2, the radial component & Hrceleration may also be obtained as
alf = —dv/dt=-d(s8)/dt.

Refer to Fig. A3. The gravitational potential eneaf the particle is given by = —mgh.

It may be expressed in termssdnd & as
U (0) = —-mgR(@L- cosf) + ssind] (A6)

Figure A3

P

(g) At the lowest point of its trajectory, the partislgjravitational potential energy must

assume its minimum valué,,. By differentiating Eq. (A6) with respect tband using Eq.
(Al), the angle 8,, corresponding to the minimum gravitational enezgy be obtained.

av_ —mg{RsinH +Esin9 + scos@j
dég dég
= -mg[Rsin@ + (-R)sind + scosd]
= -mgscosd
At =6, 3—: =0. We havd, :g. The lowest point of the patrticle’s trajectory is
6,

m

shown in Fig. A4 where the length of the stringmegt of QP is=L- 77R/2.

Figure A4

From Fig. A4 or Eq. (A6), the minimum potential egeis then

U, =U(m/2)=-mdR+L - (7R/2)] (A7)
Initially, the total mechanical enerdyis 0. SinceE is conserved, the speeg, of the
particle at the lowest point of its trajectory maatisfy
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E=0==m +U,, (A8)

From Egs. (A7) and (A8), we obtain

Vim =+~ 2/ m=429[R+ (L - 7R/2)] (A9)

Part B
(h) From Eq. (A6), the total mechanical energy of tagiple may be written as
E:O:%mvz +U(9):%mvz—mg[R(l—cosehssinH] (B1)
From Eq. (A4), the speedis equal ts . Therefore, Eq. (B1) implies
v2 = (s6)? = 2g[R(L- cosf) + s sind] (B2)

Let T be the tension in the strinffhen, as Fig. B1 shows, thecomponent of the net
force on the particle is+ mgsin 8. From Eg. (A5), the tangential acceleration of the

particle is(—sé?z) . Thus, by Newton’s second law, we have
m(-s8?) = -T + mgsin& (B3)

x 4
A

Figure B1

According to the last two equations, the tensiory bmexpressed as
T = m(sf 2+ gsing) =%[2R(1—cose) +3ssing]

- Zm_SgR[tang —g(e —%)]( sind) (B4)

_ 2mgR
S

(Y1~ ¥2)(sind)

The functions y; =tan@/2) and y, =3(@—-L/R)/2 are plotted in Fig B2.
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From Eq. (B4) and Fig. B2, we obtain the resultvaman Table B1. The angle at
which y» =y, is called 65(77< 65 <2r) and is given by

3. - Ly =tan?s
> (05— 1) = tan— (BS)
or, equivalently, by
L g _2uanfs
R—HS 3tan2 (B6)
Since the ratid/R is known to be given by
L_9n 2 .7 n 2.1 7l
—==—=+=cot--=(m+>)-Stan= (T+- B7
R™ g 3= (g Tglany(mrg) B7)

one can readily see from the last two equationis #a= 977/8.

Table B1
(V1Y) sing tensionT
0<f<n positive positive positive
6=n + o0 0 positive
mT<@<86 negative negative positive
0 =06, zero negative zero
0;,<0<2m positive negative negative

Table B1 shows that the tensidmust be positive (or the string must be taut aredgitt)

in the angular range @< &s. Onced reachesfs, the tensionl becomes zero and the
part of the string not in contact with the rod witht be straight afterwards. The shortest
possible valuen, for the lengths of the line segmer@P therefore occurs a¥l = f;and

is given by
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972 2 n 9n 2R
Smin = L—R& = R( 3 tE ?‘? tE_SSSZR (B8)

Whend = 6, we haveT = 0 and Egs. (B2) and (B3) then leads\d= —gs,,, Sind..
Hence the speedtsis

= /= OSmin SINGs \/ cot—sn— \/—cos—
=1.133/gR

(i) Whené = 6., the particle moves like a projectile under gnavks shown in Fig. B3, it is
projected with an initial speeds from the position P = (X, Ys ) in a direction making
an anglep= (37/2- 6, with they-axis.

The speedr, of the particle at the highest point of its parabtilajectory is equal to the
y-component of its initial velocity when projectéddhus,

(B9)

Vy =VgSin@s —m) = 3 cosEsm——O4334,/ gR (B10)

The horizontal distancl traveled by the particle from poiRtto the point of maximum
height is

2 i - 2
_VsSin2(6s-1m) _ vs Vs sind - 0.453R (B11)

29 29 4

Figure B3
The coordinates of the particle whérs 8, are given by
Xg = RCOSHg — Sy SiNGs = —Rcosg + Shin sin% =0.358R (B12)
Ys = Rsingg + Sy, COSHg = ~RsinZ - Smin cos? = -3478R (B13)

8 8
Evidently, we havegy|> (R+H ) Therefore the particle can indeed reach its marim

height without striking the surface of the rod.
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Part C

(j) Assume the weight is initially lower th&by h as shown in Fig. C1.

FigureC1

When the weight has fallen a distari@deand stopped, the law of conservation of total
mechanical energy as applied to the particle-wegigihtas a system leads to

-Mgh=E'-Mg(h+ D) (C1)
whereE' is thetotal mechanical energy of the partiokhen the weight has stopped. It
follows

E'=MgD (C2)

Let /1 be the total length of the string. Then, its vadii@ = 0 must be the same as at any
other angular displacemeétThus we must have

/|:L+gR+h:s+R(6?+%)+(h+D) (C3)
Noting thatD = a L and introducing = L-D, we may write
(=L-D=(@0-a)L (C4)
From the last two equations, we obtain
s=L-D-R6=/-RH (C5)

After the weight has stopped, the total mechanerargy of the particle must be
conserved. According to Eqg. (C2), we now have,eadtof Eq. (B1l), the following
equation:

E'=MgD =%mv2 - mgR(- cosb) + ssind] (C6)
The square of the particle’s speed is accordinglgrgby
V2 = (s6)? =2'\"TgD + ZgF{(l—cosH) +% siné’} (C7)
Since Eq. (B3) stills applies, the tensibof the string is given by
-T +mgsing = m(-s6?) (C8)

From the last two equations, it follows
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T =m(s@ %+ gsiné)
= _g[_ D + 2R(1- cosé) + 353|m9} (C9)
s| m
2ng
s

{—+(1 cosd) +> (ﬁ Hjsiné?}
mR 2\ R

where Eg. (C5) has been used to obtain the lastiggu
We now introduce the function

£(8) = 1—cos€+g(é - Hjsiné? (C10)
From the fact = (L - D) >> R, we may write
£(8) = 1+gﬁsme cosd = 1+ Asin@ - ¢) (C11)

where we have introduced

A= |1+ (gé)z NE tan‘l(gj (C12)

From Eg. (C11), the minimum value f¢®) is seen to be given by
fo=1-A=1- 1+(3£j (C13)
2R
Since the tensiofl remains nonnegative as the particle swings art@dod, we have
from Eq. (C9) the inequality

2
MD ¢ _ML-O,,_ 1+(%j >0 (C14)
‘mR mR 2R
or
2
()2 () =) ) €9
mR mR 2R mR 2R
From Eg. (C4), Eq. (C15) may be written as
(&}1 (ﬂ+ij( ~a) (C16)
mR R 2R

Neglecting terms of the orddrR/() or higher, the last inequality leads to

ML
( J 1 i—l 1-@

__\mR __2R _ 3.1
a=z1 ML 3L ML 3L 2M 2M (C17)
i Bt +1 1+—
mR 2R mR 2R 3m 3m
The critical value for the ratib/L is therefore
1
a, = M (C18)
1+ —
3m



Marking Scheme

Theoretical Question 1
A Swing with a Falling Weight

Total Sub Marking Scheme for Answers to the Problem
Scores Scores
PartA| (a) |Relation betweefands. ($=-R8)
> 0.2 for 908,
4.3ptsy 0.5 |5 0.3 for proportionality constantR).
(0)  |Velocity ofQ relative toO. (v, = R&f)
05 |» 0.2for magnitucj«Ré'?.
» 0.3 for directiont .
(©) Particle’s velocity aP relative toQ. (V' = —s@f + st )
0.7 » 0.2+0.1 for magnitude and direction ﬁzfcomponent.
» 0.3+0.1 for magnitude and direction bfcomponent.
(d) Particle’s velocity aP relative toO. (v=V'+V, = -sff)
0.7 > 0.3 for vector addition ofv" and v, .
» 0.2+0.2 for magnitude and direction &f.
(e) |f-component of particle’s accelerationPat
> 0.3 forrelatinga or al to the velocity in a way that implies
0.7 lad|=Vv?/s.
» 0.4 for af=-s6? (0.1 for minus sign.)
() Potential energi).
» 0.2 for formulaU =-mgh.
05 |» 0.3forh= R@-cosh) +ssind orU as a function ob), s, andR.
(9) Speed at lowest point,.
» 0.2 for lowest point atd = /2or U equals minimuntJ,
0.7 |5 0.2 for total mechanical energf =mv, /2+U,, = .0
> 0.3 for vy, =4-2U,/m=42g[R+(L-7R/2)].
PartB|  (h) |Particle’s speeds when QP is shortest.
4.3 pts 24 0.4 for tensiom becomes zero Wher@ is shortest.

0.3 for equation of motion-T +mgsing = m(-s6?).
0.3 for E=0=m(s6)? /2-mgR(L-cosd) +ssind] .

36.-Ly=tan?
0.4 for 2(0s R)—tan >
0.5 for 65, =977 /8.

0.3+0.2 forvg =,/4gR/3cosr/16=1.133/gR

YV V. VYV VY V V
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()
1.9

The speedy of the particle at its highest point.

YV VY V V

0.4 for particle undergoes projectile motion witen &; .
0.3 for angle of projectionp= 37/2-65 .)
0.3 for vy is they-component of its velocity afl = &5 .

0.4 for noting particle does not strike the surfatée rod.
0.3+0.2 for

Vy =+/4gR/3cos(7/16)sin(77/8) = 0.4334,/gR.

Part C

3.4 pts

()

3.4

The critical valuea, of the ratioD/L.

VVVYVYYV V VY

0.4 for particle’s energye' = MgD when the weight has stopped
0.3for s=L-D-R4.

0.3 for E' = MgD = mV? /2—-mg R(1L- cosd) + ssind] .

0.3 for - T +mgsinéd = m(-s6?) .

0.3 for concludingl’ must not be negative.

0.6 for an inequality leading to the determinatidnhe range oD/L.

0.6 for solving the inequality to give the rangenof D/L.
0.6 for a. = @+ 2M /3m).
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