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1 Rolling of a hexagonal prism!

1.1 Problem text

Consider a long, solid, rigid, regular hexagonal prism like a common type of pencil (Figure
1.1). The mass of the prism is M and it is uniformly distributed. The length of each
side of the cross-sectional hexagon is a. The moment of inertia I of the hexagonal prism
about its central axis is

5
I= EMCR (1.1)

a

\

Figure 1.1: A solid prism with the cross section of a regular hexagon.

The moment of inertia I’ about an edge of the prism is

17
I'="-Md? 1.2
pMa (1.2)

a) (3.5 points) The prism is initially at rest with its axis horizontal on an inclined plane
which makes a small angle # with the horizontal (Figure 1.2). Assume that the surfaces
of the prism are slightly concave so that the prism only touches the plane at its edges.
The effect of this concavity on the moment of inertia can be ignored. The prism is now
displaced from rest and starts an uneven rolling down the plane. Assume that friction
prevents any sliding and that the prism does not lose contact with the plane. The angular
velocity just before a given edge hits the plane is w; while w¢ is the angular velocity
immediately after the impact.
Show that we may write

Wi = Sw; (1.3)

and write the value of the coeflicient s on the answer sheet.

! Authors: Leé Kristjansson and Thorsteinn Vilhjalmsson



Figure 1.2: A hexagonal prism lying on an inclined plane.

b) (1 point) The kinetic energy of the prism just before and after impact is similarly K;
and K f-
Show that we may write
K;=rK; (1.4)

and write the value of the coeflicient » on the answer sheet.

¢) (1.5 points) For the next impact to occur K; must exceed a minimum value K;
which may be written in the form

where g = 9.81 m/s? is the acceleration of gravity.
Find the coefficient ¢ in terms of the slope angle § and the coefficient r. Write your
answer on the answer sheet. (Use the algebraic symbol r, not its value).

d) (2 points) If the condition of part (c) is satisfied, the kinetic energy K; will approach
a fixed value K, as the prism rolls down the incline.
Given that the limit exists, show that K;, may be written as:

Ko =rkMga (1.6)
and write the coefficient s in terms of 8 and r on the answer sheet.

e) (2 points) Calculate, to within 0.1°, the minimum slope angle 6, for which the uneven
rolling, once started, will continue indefinitely. Write your numerical answer on the answer
sheet.

1.2 Solution

a)
Solution Method 1

At the impact the prism starts rotating about a new axis, i.e. the edge which just hit
the plane. The force from the plane has no torque about this axis, so that the angular
momentum about the edge is conserved during the brief interval of impact. The linear
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momentum of the prism as a whole has the same direction as the velocity of the center of
mass (I3 = M v where the subscript C refers to the center of mass), and this direction
is easy to follow when we know the axis of rotation at a given time. Just before impact P
is directed 30° downwards relative to the plane, but will after impact point 30° upwards
from the plane, see Figure 1.3.

Figure 1.3: The linear momentum of the prism as a whole, before and after impact.

To find the angular momentum about the edge of impact just before the impact we
use the equation relating angular momentum L about an arbitrary axis to the angular
momentum L¢ about an axis through the center of mass parallel to the first one:

EZEc-i-MFngC (17)

where the subscript C refers to the center of mass. Here, this is applied to an axis at the
point of impact so that 7 is the vector from that point to the center of mass (Figure
1.3). The vectors on the right hand side of equation (1.7) both have the same direction.
Hence we get for the quantities just before impact?

|FC X ﬁCz| = 7 Ug;sin 30° = a? Wwj / 2 (18)
1 ) 1 11
Lizlwi+§Ma2wi = <E+§>Ma2wi=EMa2wi (1.9)

On the other hand, angular momentum about the edge just after impact is, from
equation (1.2):3

2This may also be done by using Steiner’s theorem twice, going from the previous axis of impact to
the center of mass and from there to the new axis of impact.
3 Alternatively:
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L;=T
f Wy = 12

—Ma*w; (1.10)
where the subscript f always refers to the situation just after impact. We may notice that
the difference comes about because of the different directions of ¥¢; and ¥cy. Now, when
we state the conservation of angular momentum, L; = L, we obtain a relation between
the angular velocities as follows:

iz 1 1.11)
ARET U T A '
We thus get:
s =11/17 (1.12)

We may note that s is independent of a, w;, and 6.

Solution Method 2

On impact the prism receives an impulse P N - s] from the plane at the edge where the
impact occurs. There is no reaction at the edge which is leaving the plane. The impulse
has a component P parallel to the inclined plane (positive upwards along the incline in
Figure 1.3 and a component P, perpendicular to the plane (positive upwards from the
plane in the same figure).

We can set up three equations with the three unknowns P, P, and the ratio s = w—f
The quantity P|| is the change in the parallel component of the linear momentum of the
prism and P, is the corresponding change in perpendicular linear momentum. Thus:

3
P = M(wi—wf)a-g (1.13)
1
P = M(wi+wf)a-§. (1.14)
We finally have:
1
PLaE — ||a§ = I (w; — wy) (1.15)

since the right hand side is the change in angular momentum about the center of mass.
Equations (1.13), (1.14) and (1.15) can now be solved for the ratio s = £ giving, of
course, the same result as before.

Ly = Twy+M |fex oy =Iws + Ma® wysin90°

) 17
= (12+1) Ma2Wf:EMa2Wf



b)

The linear speed of the center of mass just before impact is aw; and just after impact
it is awy. We know that we can always write the kinetic energy of a rotating rigid body
as a sum of ,internal“ and ,external“ kinetic energy:

1 1
Ktot = 5 I w2+ 5 M ’U% (116)
From this we see that in our case the kinetic energy K, is proportional to w? both

before and after impact so that we get

11\2 121
Ki=rK,=|—=)| K, =K, 1.17
=T (17) 289 (1.17)
SO
r = 121/289 ~ 0.419 (1.18)

c)
The kinetic energy K after the impact must be sufficient to lift the center of mass
to its highest position, straight above the point of contact. The angle through which 7¢

moves for this is

a
= — — 1.19
T 5 0 ( )

where o = 60° is the top angle of the triangles meeting at the center of the polygon.* The
energy for this lifting of the center of mass is

Ey = Mga(l — cosz) = Mga (1 — cos(30° — 6)) (1.20)

and we get the condition

K¢ =71K;> Ey= Mga (1 —cos(30° — 6)) (1.21)
thus

0= % (1 — cos(30° — 6)) (1.22)

(Note that cos(30° — 6) = ‘/73 cosf + 5 sin6).

d)
Let K, and K¢, be the kinetic energies just before and just after the nth impact.
We have shown that we have the relation

In the general case a = 27/N.



Kin=r Kip (1.23)
where r = % for a hexagonal prism. Between subsequent impacts the height of the center
of mass of the prism decreases by asinf and its kinetic energy increases for this reason

by
A = Mgasinf (1.24)

We therefore have

Ki,n—l—l = TKi,n -+ A. (125)

One does not have to write out the complete expression Kj, as a function of K;; and
n to find the limit. This would actually be a proof that the limit exists (see below) but
this is given in the problem text. Hence one can make K, ~ K;, arbitrarily accurate
for sufficiently large n. The limit K¢ must thus satisfy the iterative formula, i.e.

Ki,O = ’I"KZ'70 + A (126)
yielding the solution
A
Ko = 1.27
0= (1.27
l.e.
sin O
K = (1.28)
1—17r

We can also solve the problem explicitly by writing out the full expressions:

Kia = rKjj+A (1.29)
Kis = rKia+A=r’K;; +(1+r)A (1.30)
Kin = 'K+ (1+r+...+r" A (1.31)
1 -yt
= K+ A (1.32)
-7

In the limit of n — oo we get

A

Kin = Kip= 7

(1.33)

which is, of course, the same result as before.
If we calculate the change in kinetic energy through a whole cycle, i.e. from just before impact
number 7 until just before impact n + 1 we get

AKipn=Kini1 —Kip = (r—1)r"'K;1+r" A (1.34)
= " A-(1-7)K;1) (1.35)



This is positive if the initial value K;; < K so that K;, will then increase up to the limit
value K;g. If, on the other hand, K;; > Kjp, the kinetic energy K, just before impact will
decrease down to the limit K g.

All of this may remind you of motion with friction which increases with speed. Mathemati-
cally speaking, the main difference is that we here are dealing with difference equations instead
of differential equations.

e)
For indefinite continuation the limit value of K; in part (d) must be larger than the
minimum value for continuation found in part (c):

1 1
. A= . Mgasin@ > Mga (1 — cos(30° — 6)) /r (1.36)
-7 -7
We put 4 = = = 2L
Asinf > 1 — cos 30° cos f — sin 30° sin § (1.37)
(A+1/2)sinf + V3/2cos6 > 1 (1.38)

To solve this we define®

_ A+1/2 N o
U = arccos <\/(A g 3/4) ~ 35.36 (1.39)

and obtain

cosusinf +sinucosf > 1/y/(A+1/2)2+3/4 (1.40)
sin(u+60) > 1/y/(A+1/2)2+3/4 (1.41)
0 > arcsin{1//(A+1/2)2+3/4} —u =~ 41.94° —35.36° = 6.58°  (1.42)
That is
6o ~ 6.58° (1.43)

If 6 > 6y and the kinetic energy before the first impact is sufficient according to part
(c), we will, under the assumptions made, get an indefinite “rolling”.

5You can of course solve any of the inequalities in a purely numerical way, e.g. by progressive guessing
or by using the approximations sin ¢ ~ ¢ and cos¢ =~ 1 — ¢?/2.



1.3 Grading scheme

Part 2(a)

Answer: s = wy/w; = 11/17, equation (1.12) | 3.5
Part 2(b)

Answer: 7 = K;/K; = s* = 121/289, equation (1.18) | 1.0
Part 2(c)

Answer: K min by 6, equation (1.22) ‘ 1.5
Part 2(d)

Answer: Limit K; o by k =sinf/(1 — r), equation (1.28) | 2.0
Part 2(e)

Answer: Minimum angle 6y = 6.58°, equation (1.43) | 2.0




2 Water under an ice cap®

2.1 Problem text

An ice cap is a thick sheet of ice (up to a few km in thickness) resting on the ground below
and extending horizontally over tens or hundreds of km. In this problem we consider the
melting of ice and the behavior of water under a temperate ice cap, i.e. an ice cap at
the melting point. We may assume that under such conditions the ice causes pressure
variations as a viscous fluid, but deforms in a brittle fashion, principally by vertical
movement. For the purposes of this problem the following information is given.

Density of water: pw = 1.000 - 103 kg/m?
Density of ice: p; = 0.917 - 10% kg/m?
Specific heat of ice: ¢ =2.1-10° J/(kg °C)
Specific latent heat of ice: L; =34-10° J/kg
Density of rock and magma: pr =2.9-10% kg/m3
Specific heat of rock and magma: ¢, =700 J/(kg °C)

Specific latent heat of rock and magma: L, = 4.2-10° J/kg
Average outward heat flow through the Jg = 0.06 W/m?
surface of the earth:

Melting point of ice: To = 0°C, constant

a) (0.5 points) Consider a thick ice cap at a location of average heat flow from the interior
of the earth. Using the data from the table, calculate the thickness d of the ice layer
melted every year and write your answer in the designated box on the answer sheet.

b) (3.5 points) Consider now the upper surface of an ice cap. The ground below the ice
cap has a slope angle o. The upper surface of the cap slopes by an angle 3 as shown in
Figure 2.1. The vertical thickness of the ice at x = 0 is hg. Hence the lower and upper
surfaces of the ice cap can be described by the equations

yp =ztancw, Yo = hg +xtan 8 (2.1)

Derive an expression for the pressure p at the bottom of the ice cap as a function of
the horizontal coordinate x and write it on the answer sheet.

Formulate mathematically a condition between § and «, so that water in a layer
between the ice cap and the ground will flow in neither direction. Show that the condition
is of the form tan 8 = stana. Find the coefficient s and write the result in a symbolic
form on the answer sheet.

The line y; = 0.8 z in Figure 2.2 shows the surface of the earth below an ice cap. The
vertical thickness hg at x = 0is 2 km. Assume that water at the bottom is in equilibrium.

On a graph answer sheet draw the line y; and add a line y, showing the upper surface
of the ice. Indicate on the figure which line is which.

6 Authors: Gudni Axelsson and Thorsteinn Vilhjalmsson
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Figure 2.1: Cross section of an ice cap with a plane surface resting on an inclined plane
ground. S: surface, G: ground, I: ice cap.

¢) (1 point) Within a large ice sheet on horizontal ground and originally of constant
thickness D = 2.0 km, a conical body of water of height H = 1.0 km and radius r = 1.0
km is formed rather suddenly by melting of the ice (Figure 2.3). We assume that the
remaining ice adapts to this by vertical motion only.

Show analytically on a blank answer sheet and pictorially on a graph answer sheet,
the shape of the surface of the ice cap after the water cone has formed and hydrostatic
equilibrium has been reached.

d) (5 points) In its annual expedition an international group of scientists explores a
temperate ice cap in Antarctica. The area is normally a wide plateau but this time they
find a deep crater-like depression, formed like a top-down cone with a depth h of 100 m
and a radius 7 of 500 m (Figure 2.4). The thickness of the ice in the area is 2000 m.

After a discussion the scientists conclude that most probably there was a minor vol-
canic eruption below the ice cap. A small amount of magma (molten rock) intruded at
the bottom of the ice cap, solidified and cooled, melting a certain volume of ice. The
scientists try as follows to estimate the volume of the intrusion and get an idea of what
became of the melt water.

Assume that the ice only moved vertically. Also assume that the magma was com-
pletely molten and at 1200°C at the start. For simplicity, assume further that the intrusion
had the form of a cone with a circular base vertically below the conical depression in the
surface. The time for the rising of the magma was short relative to the time for the
exchange of heat in the process. The heat flow is assumed to have been primarily vertical
such that the volume melted from the ice at any time is bounded by a conical surface
centered above the center of the magma intrusion.

Given these assumptions the melting of the ice takes place in two steps. At first the
water is not in pressure equilibrium at the surface of the magma and hence flows away.
The water flowing away can be assumed to have a temperature of 0°C. Subsequently,

11



y = ho—
y=0 7
z=20

Figure 2.2: Cross section of a temperate ice cap resting on an inclined ground with water
at the bottom in equilibrium. G: ground, I: ice cap.

hydrostatic equilibrium is reached and the water accumulates above the intrusion instead
of flowing away.

When thermal equilibrium has been reached, you are asked to determine the following
quantities. Write the answers on the answer sheet.

1. The height H of the top of the water cone formed under the ice cap, relative to the
original bottom of the ice cap.

2. The height hy of the intrusion.

3. The total mass my,; of the water produced and the mass m' of water that flows
away.

Plot on a graph answer sheet, to scale, the shapes of the rock intrusion and of the
body of water remaining. Use the coordinate system suggested in Figure 2.4.
2.2 Solution
a)

Based on the conservation of energy we have
JQ -1 year = Lipid (2.2)

12



-------- -y =H

Figure 2.3: A vertical section through the mid-plane of a water cone inside an ice cap. S:
surface, W: water, G: ground, I: ice cap.

_Jg-lyear 0.06J s7' m™2 365.25 - 24 -60 -60 s

d =

=6.1-10"%m (2.3)

b)
Let p, be the atmospheric pressure, taken to be constant. At a depth z inside the ice
cap the pressure is given by:

P = pigz + Pa (2.4)

Therefore, at the bottom of the ice cap, where z = yo — yy:

p = pig(y2 — Y1) + Pa (2.5)
= pigz(tan B — tan o) + pigho + pa (2.6)

For water not to move at the base of the ice cap the pressure must be hydrostatic
(trivial, but can be seen from Bernoulli’s equation), i.e.

13



Figure 2.4: A wvertical and central cross section of a conical depression in a temperate ice
cap. S: surface, G: ground, I: ice cap, M: rock/magma intrusion, W: water. Note that

the figure 1s NOT drawn to scale.

p = constant — pygl1
= constant — p,gT tan «

Therefore

pigx(tan § — tan o) = —py, gz tan o

leading to

tan 8 = _Pw P tan o = _2P tan a =~ —0.091 tanc

Pi Pi
s =—Ap/p; = —0.091

where the minus-sign is significant.

(2.9)

This can also be seen in various ways by looking at a mass element of water at the
bottom of the ice and demanding equilibrium. — We now proceed with the solution.

14



With tan o = 0.8, we get tan § = —0.073 and

Y2 = 2 km — 0.073 @ (2.13)

The students are supposed to draw this line on a graph.

c)

Since the ice adapts by vertical motion only we see that the conical depression at the
surface will have the same radius of 1.0 km as the intrusion. According to (b) it will have
a depth of

A
h = |rtang| = ZPrtana (2.14)
Pi
_ Sy (2.15)
Pi
= 0.091 -1km =91 m. (2.16)

The students are supposed to show this result as a graph.

d)

The volume of a circular coneis V = %mﬂh. We assume that the height of the intrusion
is h1. We may say that it firstly melts an ice cone of its own volume V; = %mﬂhl. Pressure
equilibrium has not yet been reached. Hence the water will flow away and the ice will keep
contact with the face of the intrusion making the upper surface of the ice horizontal again.
The intrusion then melts a volume equivalent to a cone of height hy = %hl whereupon
pressure equilibrium has been reached (following part (c)). During this second phase the
melted water will also flow away. Assuming that the intrusion still has not cooled down
to 0°C the intrusion will further melt a volume equivalent to a cone of height hg, its water
accumulating in place, forming a cone of height hf = 5_12 hs relative to the top of the
intrusion. The total height of the ice cone melted is

htot = hl -+ h/2 -+ h3 (217)
The depth of the depression at the surface will be given by

A
h= =2 (hy o+ 1Y) (2.18)

2

which is most easily seen by considering pressure equilibrium in the final situation (again
following part (c)). Thus, the requested height of the top of the water cone is

Pi

H =h, +h = Ap h=1.1 X 10°m (2.19)
The heat balance gives
1
37 r? {p;hi (L, + ¢, AT) — p; Li hios} =0 (2.20)

15



where AT = 1200°C is the change in temperature of the rock intrusion. Following equa-
tion (2.17) and using the facts that hy = %hl and hs = 22hj we obtain

A w w
hior = b1 + —Lhy + P21 = P2 (hy + 1Y) (2.21)

] ] ]

Therefore (using equation (2.19))

Pw ' Puw Pw 3
higt = — (hy + R H="—h=120-10"m 2.22
w =y (it hy) =0 Ap (2.22)

This implies that the cone does not reach the surface of the ice cap. Inserting the
result into the equation (2.20) we can solve for h;:

pi pw Li h
_ 2.2
pr i (Lr + ¢ AT) = A (2.23)
= 2.24
ha Ap pr (Ly + ¢ AT) (2:24)
= 103 m (2.25)

The total mass of water formed is of course equal to the mass of the ice melted and is
Myor = p; (1/3) m 1% hyor = 2.9 - 10" kg (2.26)

The mass of the water which flows away is

hi+h w P
m, = % Mot = pp A ! Mot = 2.7 - 1010 kg (227)
tot 1 Ttot

The students are finally expected to plot the shapes of the rock intrusion and the
water body.

2.3 Grading scheme

2(a)
Answer: equation (2.3),d =6.1-107° m 0.5
2(b)
Answer i): equation (2.6): p = p;gz(tan 3 — tan «) + p;gho + pa 1.0
Answer ii): equation (2.10): s = —f2= = —% 2.0
Answer iii): Graph based on equation (2.13) 0.5
2(c)
Answer: Depth, radius and graph, » = 1000 m, h = 91 m 1.0
2(d)
Answer 1): Height of water cone as in (2.19): H =1.1-10° m 2.0
Answer ii): Height of intrusion as in (2.25): hy = 103 m 1.0
Answer iii): Total mass of melt water as in (2.26): my; = 2.9-10" kg | 0.5
Answer iv): Mass of water flowing away as in (2.27): m' =2.7-10"% kg | 1.0
Answer v): Graph 0.5
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3 Faster than light?’

3.1 Problem text

In this problem we analyze and interpret measurements made in 1994 on radio wave
emission from a compound source within our galaxy.

The receiver was tuned to a broad band of radio waves of wavelengths of several
centimeters. Figure 3.1 shows a series of images recorded at different times. The contours
indicate constant radiation strength in much the same way as altitude contours on a
geographical map. In the figure the two maxima are interpreted as showing two objects
moving away from a common center shown by crosses in the images. (The center, which
is assumed to be fixed in space, is also a strong radiation emitter but mainly at other
wavelengths). The measurements conducted on the various dates were made at the same
time of day.

The scale of the figure is given by a line segment showing one arc second (as). (1 as =
1/3600 of a degree). The distance to the celestial body at the center of the figure, indicated
by crosses, is estimated to be R = 12.5 kpc. A kiloparsec (kpc) equals 3.09 -10'® m. The
speed of light is ¢ = 3.00 -10® m/s. Error calculations are not required in the solution.

a) (2 points) We denote the angular positions of the two ejected radio emitters, relative
to the common center, by 6,(t) and 6(t), where the subscripts 1 and 2 refer to the left
and right hand ones, respectively, and ¢ is the time of observation. The angular speeds, as
seen from the Earth, are w; and wy. The corresponding apparent transverse linear speeds
of the two sources are denoted by v} ; and v .

Using Figure 3.1, make a graph to find the numerical values of w; and w, in milli-arc-
seconds per day (mas/d). Also determine the numerical values of v; | and vy |, and write
all answers on the answer sheet. (You may be puzzled by some of the results).

b) (3 points) In order to resolve the puzzle arising in part (a), consider a light-source
moving with velocity 7 at an angle ¢ (0 < ¢ < 7) to the direction towards a distant
observer O (Figure 3.2). The speed may be written as v = ¢, where c is the speed of
light. The distance to the source, as measured by the observer, is R. The angular speed
of the source, as seen from the observer, is w, and the apparent linear speed perpendicular
to the line of sight is /.

Find w and ¢, in terms of 3, R and ¢ and write your answer on the answer sheet.

¢) (1 point) We assume that the two ejected objects, described in the introduction and in
part (a), are moving in opposite directions with equal speeds v = Sc. Then the results of
part (b) make it possible to calculate 5 and ¢ from the angular speeds w; and wy and the
distance R. Here ¢ is the angle defined in part (b), for the left hand object, corresponding
to subscript 1 in part (a).

Derive formulas for 8 and ¢ in terms of known quantities and determine their numerical
values from the data in part (a). Write your answers in the designated fields on the answer
sheet.

d) (2 points) In the one-body situation of part (b), find the condition for the apparent
perpendicular speed v/, to be larger than the speed of light c.

7Authors: Einar Gudmundsson, Knatur Arnason and Thorsteinn Vilhjalmsson
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Figure 3.1: Radio emission from a source in our galazy.
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Figure 3.2: The observer is at O and the original position of the light source is at A. The
velocity vector is U.

Write the condition in the form § > f(¢) and provide an analytic expression for the
function f on the answer sheet.

Draw on the graph answer sheet the physically relevant region of the (8, ¢)-plane.
Show by shading in which part of this region the condition v, > ¢ holds.

e) (1 point) Still in the one-body situation of part (b), find an expression for the maximum
value (v )maz Of the apparent perpendicular speed v/, for a given @ and write it in the
designated field on the answer sheet. Note that this speed increases without limit when
8 — 1.

f) (1 point) The estimate for R given in the introduction is not very reliable. Scientists
have therefore started speculating on a better and more direct method for determining R.
One idea for this goes as follows. Assume that we can identify and measure the Doppler
shifted wavelengths A; and A of radiation from the two ejected objects, corresponding to
the same known original wavelength )\; in the rest frames of the objects.
Starting from the equations for the relativistic Doppler shift,

A= Xg(1—Bcos¢)(1—B2)~'/2 and assuming, as before, that both objects have the same
speed, v, show that the unknown § = v/c can be expressed in terms of A, A1, and Ay as

ﬂ:\/l—%. (3.1)

Write the numerical value of the coefficient « in the designated field on the answer sheet.
You may note that this means that the suggested wavelength measurements will in
practice provide a new estimate of the distance.

3.2 Solution

a) On Figure 3.1 we mark the centers of the sources as neatly as we can. Let 6;(¢) be
the angular distance of the left center from the cross as a function of time and 6,(¢) the
angular distance of the right center. We measure these quantities on the figure at the
given times by a ruler and convert to arcseconds according to the given scale. This results
in the following numerical data:
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time 01 02

[days] | [as] | [as]
0 0.139 | 0.076
7 0.253 | 0.139
13 0.354 | 0.190
20 0.468 | 0.253
27 0.601 | 0.316
34 0.709 | 0.367

The uncertainty in the readings by the ruler is estimated to be +0.5 mm, resulting in
the uncertainty of & 0.013 as in the € values. We plot the data in Figure 3.3.

0 5 10 15 20 25 30 35
time (days)

Figure 3.3: The angular distances 61 and 0y (in as) as functions of the time in days.

Fitting straight lines through the data results in:

w; = df;/dt = (17.0 + 1.0) mas/day = 9.54 - 10~ "*rad/s (3.2)
we = dfy/dt = (8.7 4+ 1.0) mas/day = 4.88 - 10~ "*rad/s (3.3)
vy, = w R=954-10"".12.5-3.09 10" (3.4)
(3.5)
(3.6)

3.68 - 10°m/s ~ (1.23 £ 0.07) ¢
vy, = 1.89.10°m/s ~ (0.63 £0.07) c

b) We consider the motion of the source during the time interval A¢ from the point A to
the point A’, see Figure 3.4.
We then have

FAAIZFAI—FAZﬁ'At. (37)

Now let At’ denote the difference in arrival times at O of the signals from A and A’
Due to the different distances to A and A’ and the finite speed of light, ¢, we have
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AI

Figure 3.4: The observer is at O and the original position of the source is at A. The
velocity vector is U.

At = At+ (rar —ra)/c. (3.8)

For small Atf, such that v At << ry = R, we have

Ta —TaAR —v Atcos¢ (3.9)
and hence
At' =~ At (1 —fcosd); B=v/c. (3.10)
This implies that an observer at O will find the apparent transverse speed of the source
to be
A A i
o, = Az _ x _ cBsin ¢ (3.11)
At At (1 —fFcos¢) 1—[Bcos¢

where we have used that the real transverse speed in the reference frame of the observer
is v, = Az/At = ¢fsin ¢.
The angular speed observed at O is

_ﬁ_ cBsin ¢
““R"R (1 — B cos o) (3.12)

¢) Figure 3.5 shows the situation in this case. Note the relations given in the caption.
Taking ¢ = ¢; we have sin ¢p = sin ¢ and cos ¢ = — cos ¢. Equation (3.12) then gives:

B ¢ sin¢
(95} R (1 —ﬂCOS ¢) (313)
w = —bcsme (3.14)

R (14 Bcos o)
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Figure 3.5: If the two objects have equal speeds but opposite velocities we have v = vy =

v, bi=02=0 and ¢ =T — ¢1.

The quantities w;, we and R are given, but 3 and ¢ are to be determined as stated in
the problem text. Simple algebra gives:

(1— 03 cosd) wywa = [ csing we/R (3.15)
(148 cosp) waw; = fcsing w/R. (3.16)

Subtracting (3.15) from (3.16) gives:

28 cos¢ wywy =pcsing (w —ws)/R (3.17)

(3.19)
Dividing (3.15) by (3.16) gives 3 in terms of cos¢ and the known quantities w; and
Wwo!

wi (1= cos¢p) =ws (1+ 5 cosg) (3.20)

w1 — W2

= cosd (o +07) (3.21)

Inserting the values of w; and wo from part (a) and the given values of R and ¢ we get:

¢ = arctan(2.57) = 1.20 rad = 68.8° £ 2° (3.22)
B = 0.892 4+ 0.08 (3.23)
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d) Equation (3.11) shows that the observer will find the apparent transverse speed to be
larger than or equal to the speed of light if and only if:

Bsin ¢

T Besg 2 (3.24)
If 8 < 1 condition (3.24) is equivalent to:
Bsing > 1— [Fcosd (3.25)
B (sing +cosp) > 1 (3.26)
B V2 (sinqﬁcos%—i—cos ¢sin %) > 1 (3.27)
. T 1
and hence (3.24) is satisfied if:
5> £(9) = (Vasin(d+/4)) " . (3.29)

The physically relevant region in the (3, ¢)-plane is:

(B, ¢) € [0,1[x[0, 7] . (3.30)

It is obvious that (3.24) can only be satisfied for ¢ € [0,7/2] and (3.28) can only have
a solution for ¢ if 8 > 1/v/2.
We therefore take a closer look at the region

(B,6) € [27V2,1] x [0,7/2] (3.31)

The mapping
(8,9) — Bsin (¢ + %) (3.32)

is continuous in this region. It is therefor sufficient to look at the boundary of the region,
defined by the equality sign in (3.28):

T 1
sin(9+7) = —= 3.33
psin(6+7) = 5 (3.33)
This defines 3 as a function of ¢ which is shown in Figure 3.6 as the curve bounding
the shaded area where v/, > c.

e) To find the extrema of v/, as a function of ¢ we differentiate (3.11) and get

d (v _ Bleoss—f)
a4 ( c) (1= fFeosd)? (3:54)

This is zero for ¢ = ¢, where:
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Figure 3.6: The region between the
horizontal line and the curve in the
upper left hand corner shows where
v fe> 1.

Figure 3.7: The curved surface isv' [c
as a function of B and ¢. The plane
represents the constant function 8 = 1.

oS ¢, = B 5 ¢y, = arccos 3 €]0, /2] (3.35)

To see that this is indeed a maximum, we differentiate (3.34) again and get:

2 (v _ sin ¢ G sin ¢(cos ¢ — J)
i (2) = (= Fomar * 20 eanae ) (3:36)

At the extremum

c

d2 ! s m
- (LL) L _ _7(/;?“5;)2 <0 (3.37)

showing that ¢, corresponds to a maximum. From (3.11) and (3.35) the maximum

apparent transverse speed is given:

Bc

('vj_)maa: = (338)

From this and (3.35) we see that

Ji- B

(Uﬁ_)maw — 00 ; @y —> 0. (3.39)

—1 p—1

Figure 3.7 shows v/, /c as a function of 3 and ¢ in the region (3, ¢) € [27/2,1] x [0, 7/2].

f) We have the equations for relativistic Doppler-shift:
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A 1 F[cosg

= 3.40
= (3.40)
We add them, define an auxiliary ratio p and solve for 5.
A+ A 1
= = 3.41
P = =7 (3.41)
2 (-5 =1 (3.42)

g:mz\/l_(‘i (3.43)

AL+ Ag)?
giving
a=4 (3.44)

Adding equation (3.43) to the set of equations (3.18) and (3.21) we have three equations
which can be solved for the three unknowns 3, ¢ and R. For instance, we may calculate 3
from (3.43), insert that into (3.21), and solve for ¢. The distance R can then be obtained
from (3.18). Thus the measurement of the Doppler-shifted wavelengths turns out to give
an estimate of the distance to the source provided that w; and ws are known.

3.3 Grading scheme

Part 1(a)
Answer i): equation (3.2), w; in the range (16.5-17.5) mas/day 0.8
Answer ii): equation (3.3), we in the range (8.2-9.2) mas/day 0.8
Answer iii): equation (3.4), for v] | in the range (1.13-1.30)c 0.2
Answer iv): equation (3.6), for vy | in the range (0.56-0.70)c 0.2
Part 1(b)

Answer i): ¢/, (8, ¢), equation (3.11) 2.5
Answer ii): w(3, ¢), equation (3.12) 0.5
Part 1(c)

Answer 1): ¢(wy,ws), equation (3.19) 0.3
Answer ii): #(wi,ws), equation (3.21) 0.3
Answer iii): ¢ numerical in the range 67° - 71° 0.2
Answer iv): 3 numerical in the range 0.81-0.97 0.2
Part 1(d)

Answer i): Condition 5 > f(¢), equation (3.29) 1.0
Answer ii): Condition on (3, ¢), graph 1.0
Part 1(e)

Answer: (v )maz, €quation (3.38) | 1.0
Part 1(f)

Answer: 3 in terms of \-s, by «, equation (3.44) | 1.0
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