

27th INTERNATIONAL PHYSICS OLYMPIAD OSLO, NORWAY

THEORETICAL COMPETITION JULY 2 1996

Solution Problem 1

a) The system of resistances can be redrawn as shown in the figure:

The equivalent drawing of the circuit shows that the resistance between point c and point A is 0.5Ω , and the same between point d and point B. The resistance between points A and B thus consists of two connections in parallel: the direct 1Ω connection and a connection consisting of two 0.5Ω resistances in series, in other words two parallel 1Ω connections. This yields

$$R = \underline{0.5\Omega}$$
.

b) For a sufficiently short horizontal displacement Δs the path can be considered straight. If the corresponding length of the path element is ΔL , the friction force is given by

$$\mu mg \frac{\Delta s}{\Delta L}$$

1

and the work done by the friction force equals force times displacement:

$$\mu \ mg \frac{\Delta s}{\Delta L} \cdot \Delta L = \mu \ mg \Delta s.$$

Adding up, we find that along the whole path the total work done by friction forces is μ mg s. By energy conservation this must equal the decrease mg h in potential energy of the skier. Hence

$$h = \underline{\mu s}$$
.

c) Let the temperature increase in a small time interval dt be dT. During this time interval the metal receives an energy P dt.

The heat capacity is the ratio between the energy supplied and the temperature increase:

$$C_p = \frac{Pdt}{dT} = \frac{P}{dT/dt}.$$

The experimental results correspond to

$$\frac{dT}{dt} = \frac{T_0}{4} a [1 + a(t - t_0)]^{-3/4} = T_0 \frac{a}{4} \left(\frac{T_0}{T}\right)^3.$$

Hence

$$C_p = \frac{P}{dT/dt} = \frac{4P}{aT_0^4}T^3.$$

(*Comment*: At low, but not extremely low, temperatures heat capacities of metals follow such a T^3 law.)

d)

Under stationary conditions the net heat flow is the same everywhere:

$$J = \sigma(T_h^4 - T_1^4)$$
$$J = \sigma(T_1^4 - T_2^4)$$
$$J = \sigma(T_2^4 - T_1^4)$$

Adding these three equations we get

$$3J = \sigma(T_h^4 - T_l^4) = J_0,$$

where J_0 is the heat flow in the absence of the heat shield. Thus $\xi = J/J_0$ takes the value

$$\underline{\xi = \frac{1}{3}}.$$

e) The magnetic field can be determined as the superposition of the fields of two *cylindrical* conductors, since the effects of the currents in the area of intersection cancel. Each of the cylindrical conductors must carry a larger current I', determined so that the fraction I of it is carried by the actual cross section (the moon-shaped area).

The ratio between the currents I and I'equals the ratio between the cross section areas:

$$\frac{I}{I'} = \frac{\left(\frac{\pi}{12} + \frac{\sqrt{3}}{8}\right)D^2}{\frac{\pi}{4}D^2} = \frac{2\pi + 3\sqrt{3}}{6\pi}.$$

Inside one cylindrical conductor carrying a current I' Ampère's law yields at a distance r from the axis an azimuthal field

$$B_{\phi} = \frac{\mu_0}{2\pi r} \frac{I'\pi r^2}{\frac{\pi}{4}D^2} = \frac{2\mu_0 I'r}{\pi D^2}.$$

The cartesian components of this are

$$B_x = -B_\phi \frac{y}{r} = -\frac{2\mu_0 I' y}{\pi D^2};$$
 $B_y = B_\phi \frac{x}{r} = \frac{2\mu_0 I' x}{\pi D^2}.$

For the superposed fields, the currents are $\pm I'$ and the corresponding cylinder axes are located at $x = \mp D/4$.

3

The two x-components add up to zero, while the y-components yield

$$B_{y} = \frac{2\mu_{0}}{\pi D^{2}} [I'(x+D/4) - I'(x-D/4)] = \frac{\mu_{0}I'}{\pi D} = \frac{6\mu_{0}I}{\underline{(2\pi + 3\sqrt{3})D}},$$

i.e., a *constant* field. The direction is along the positive *y*-axis.

Solution problem 2

a) The potential energy gain eV is converted into kinetic energy. Thus

$$\frac{1}{2}mv^2 = eV$$
 (non-relativistically)

$$\frac{mc^2}{\sqrt{1 - v^2/c^2}} - mc^2 = eV$$
 (relativistically).

Hence

$$v = \begin{cases} \sqrt{2eV/m} & \text{(non - relativistically)} \\ c\sqrt{1 - (\frac{mc^2}{mc^2 + eV})^2} & \text{(relativistically)}. \end{cases}$$
 (1)

b) When V = 0 the electron moves in a homogeneous static magnetic field. The magnetic Lorentz force acts orthogonal to the velocity and the electron will move in a circle. The initial velocity is tangential to the circle.

The radius *R* of the orbit (the "cyclotron radius") is determined by equating the centripetal force and the Lorentz force:

$$eBv_0 = \frac{mv_0^2}{R},$$

i.e.

$$B = \frac{mv_0}{\rho R} \tag{2}$$

From the figure we see that in the critical case the radius R of the circle satisfies

$$\sqrt{a^2 + R^2} = b - R$$

By squaring we obtain

$$a^{2} + R^{2} = b^{2} - 2bR + R^{2}$$

$$R = (b^{2} - a^{2})/2b$$

Insertion of this value for the radius into the expression (2) gives the critical field

$$B_{c} = \frac{mv_{0}}{eR} = \frac{2bmv_{0}}{(b^{2} - a^{2})e}.$$

c) The change in angular momentum with time is produced by a torque. Here the azimuthal component F_{φ} of the Lorentz force $\vec{F} = (-e)\vec{B} \times \vec{v}$ provides a torque $F_{\varphi}r$. It is only the radial component $v_r = dr/dt$ of the velocity that provides an azimuthal Lorentz force. Hence

$$\frac{dL}{dt} = eBr\frac{dr}{dt},$$

which can be rewritten as

$$\frac{d}{dt}(L - \frac{eBr^2}{2}) = 0.$$

Hence

$$C = L - \frac{1}{2}eBr^2 \tag{3}$$

is constant during the motion. The dimensionless number k in the problem text is thus $k = \frac{1}{2}$.

d) We evaluate the constant C, equation (3), at the surface of the inner cylinder and at the maximal distance r_m :

$$0 - \frac{1}{2}eBa^2 = mvr_m - \frac{1}{2}eBr_m^2$$

which gives

$$v = \frac{eB(r_m^2 - a^2)}{2mr_m}. (4)$$

Alternative solution: One may first determine the electric potential V(r) as function of the radial distance. In cylindrical geometry the field falls off inversely proportional to r, which requires a logarithmic potential, $V(s) = c_1 \ln r + c_2$. When the two constants are determined to yield V(a) = 0 and V(b) = V we have

$$V(r) = V \frac{\ln(r/a)}{\ln(b/a)}.$$

The gain in potential energy, $sV(r_m)$, is converted into kinetic energy:

$$\frac{1}{2}mv^2 = eV\frac{\ln(r_m/a)}{\ln(b/a)}.$$

Thus

$$v = \sqrt{\frac{2eV}{m} \frac{\ln(r_m / a)}{\ln(b / a)}}.$$
 (5)

- (4) and (5) seem to be different answers. This is only apparent since r_m is not independent parameter, but determined by B and V so that the two answers are identical.
- e) For the critical magnetic field the maximal distance r_m equals b, the radius of the outer cylinder, and the speed at the turning point is then

$$v = \frac{eB(b^2 - a^2)}{2mb}.$$

Since the Lorentz force does not work, the corresponding kinetic energy $\frac{1}{2} mv^2$ equals eV (question a):

$$v = \sqrt{2e V/m}$$
.

The last two equations are consistent when

$$\frac{eB(b^2 - a^2)}{2mb} = \sqrt{2eV/m}.$$

The critical magnetic field for current cut-off is therefore

$$B_c = \frac{2b}{b^2 - a^2} \sqrt{\frac{2mV}{e}}.$$

f) The Lorentz force has no component parallel to the magnetic field, and consequently the velocity component v_B is constant under the motion. The corresponding displacement parallel to the cylinder axis has no relevance for the question of reaching the anode.

Let v denote the final azimuthal speed of an electron that barely reaches the anode. Conservation of energy implies that

$$\frac{1}{2}m(v_B^2 + v_\varphi^2 + v_r^2) + eV = \frac{1}{2}m(v_B^2 + v^2),$$

$$v = \sqrt{v_r^2 + v_\varphi^2 + 2eV/m}.$$
(6)

giving

Evaluating the constant C in (3) at both cylinder surfaces for the critical situation we have

$$mv_{\varphi}a - \frac{1}{2}eB_{c}a^{2} = mvb - \frac{1}{2}eB_{c}b^{2}.$$

Insertion of the value (6) for the velocity v yields the critical field

$$B_{c} = \frac{2m(vb - v_{\varphi}a)}{e(b^{2} - a^{2})} = \frac{2mb}{e(b^{2} - a^{2})} \left[\sqrt{v_{r}^{2} + v_{\varphi}^{2} + 2eV/m} - v_{\varphi}a/b \right].$$

Solution Problem 3

a) With the centre of the earth as origin, let the centre of mass C be located at \vec{l} . The distance l is determined by

$$M l = M_m (L - l),$$

which gives

$$l = \frac{M_m}{M + M_m} L = \underbrace{4.63 \cdot 10^6 \,\text{m}}_{,} \tag{1}$$

less than *R*, and thus inside the earth.

The centrifugal force must balance the gravitational attraction between the moon and the earth:

$$M\omega^2 l = G \frac{MM_m}{L^2},$$

which gives

$$\omega = \sqrt{\frac{GM_m}{L^2 l}} = \sqrt{\frac{G(M + M_m)}{L^3}} = \underline{2.67 \cdot 10^{-6} \,\mathrm{s}^{-1}}.$$
 (2)

(This corresponds to a period $2\pi/\omega = 27.2$ days.) We have used (1) to eliminate l.

- **b)** The potential energy of the mass point m consists of three contributions:
- (1) Potential energy because of rotation (in the rotating frame of reference, see the problem text),

$$-\frac{1}{2}m\omega^2r_1^2,$$

where \vec{r}_1 is the distance from C. This corresponds to the centrifugal force $m\omega^2 r_1$, directed outwards from C.

(2) Gravitational attraction to the earth,

$$-G\frac{mM}{r}$$
.

(3) Gravitational attraction to the moon,

$$-G\frac{mM_m}{r_m},$$

where \vec{r}_m is the distance from the moon.

Describing the position of m by polar coordinates r, φ in the plane orthogonal to the axis of rotation (see figure), we have

$$\vec{r_1}^2 = (\vec{r} - \vec{l})^2 = r^2 - 2rl\cos\varphi + l^2.$$

Adding the three potential energy contributions, we obtain

$$V(\vec{r}) = -\frac{1}{2}m\omega^{2}(r^{2} - 2rl\cos\varphi + l^{2}) - G\frac{mM}{r} - G\frac{mM_{m}}{|\vec{L} - \vec{r}|}.$$
 (3)

Here l is given by (1) and

$$|\vec{r}_m| = \sqrt{(\vec{L} - \vec{r})^2} = \sqrt{L^2 - 2\vec{L}\vec{r} + r^2} = L\sqrt{1 + (r/L)^2 - 2(r/L)\cos\varphi},$$

c) Since the ratio r/L = a is very small, we may use the expansion

$$\frac{1}{\sqrt{1+a^2-2a\cos\varphi}} = 1 + a\cos\varphi + a^2 \frac{1}{2}(3\cos^2\varphi - 1).$$

Insertion into the expression (3) for the potential energy gives

$$V(r,\varphi)/m = -\frac{1}{2}\omega^2 r^2 - \frac{GM}{r} - \frac{GM_m r^2}{2L^3} (3\cos^2\varphi - 1),$$
 (4)

apart from a constant. We have used that

$$m\omega^2 r l \cos \varphi - Gm M_m \frac{r}{L^2} \cos \varphi = 0,$$

when the value of ω^2 , equation (2), is inserted.

The form of the liquid surface is such that a mass point has the same energy *V* everywhere on the surface. (This is equivalent to requiring no net force tangential to the surface.) Putting

$$r = R + h$$
,

where the tide h is much smaller than R, we have approximately

$$\frac{1}{r} = \frac{1}{R+h} = \frac{1}{R} \frac{1}{1+(h/R)} \cong \frac{1}{R} (1 - \frac{h}{R}) = \frac{1}{R} - \frac{h}{R^2},$$

as well as

$$r^2 = R^2 + 2Rh + h^2 \cong R^2 + 2Rh$$

Inserting this, and the value (2) of ω into (4), we have

$$V(r,\varphi)/m = -\frac{G(M+M_m)R}{L^3}h + \frac{GM}{R^2}h - \frac{GM_m r^2}{2L^3}(3\cos^2\varphi - 1),$$
 (5)

again apart from a constant.

The magnitude of the first term on the right-hand side of (5) is a factor

$$\frac{(M+M_m)}{M}(\frac{R}{L})^3 \cong 10^{-5}$$

smaller than the second term, thus negligible. If the remaining two terms in equation (5) compensate each other, *i.e.*

$$h = \frac{M_m r^2 R^2}{2 M L^3} (3 \cos^2 \varphi - 1),$$

then the mass point m has the same energy everywhere on the surface. Here r^2 can safely be approximated by R^2 , giving the tidal bulge

$$h = \frac{M_m R^4}{2MI^3} (3\cos^2 \varphi - 1).$$

The largest value $h_{\rm max} = M_m R^4/ML^3$ occurs for $\varphi = 0$ or π , in the direction of the moon or in the opposite direction, while the smallest value $h_{\rm min} = -M_m R^4/2ML^3$ corresponds to $\varphi = \pi/2$ or $3\pi/2$. The difference between high tide and low tide is therefore

$$h_{\text{max}} - h_{\text{min}} = \frac{3M_m R^4}{2ML^3} = \underline{0.54 \text{ m}}.$$

(The values for high and low tide are determined up to an additive constant, but the difference is of course independent of this.)