OSLO 1996
27 “INTERNATIONAL
FHYSICS OLYMPIAD

27" INTERNATIONAL PHYSICSOLYMPIAD
OSLO, NORWAY

THEORETICAL COMPETITION
JULY 2 1996

Solution Problem 1

a) The system of resistances can be redrawn as sihaive figure:

10 1Q 10 10 10
AI Z—l A9 B

The equivalent drawing of the circuit shows that tesistance between point ¢ and point A is
0.5Q2, and the same between point d and point B. Thsta@se between points A and B thus
consists of two connections in parallel: the ditgetconnection and a connection consisting
of two 0.82 resistances in series, in other words two pdrifle connections. This yields
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=

b) For a sufficiently short horizontal displacemeistthe path can be considered straight. If
the corresponding length of the path elemedlisthe friction force is given by
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pmg- -



and the work done by the friction force equalscéatimes displacement:

As
# mg—[AL = 4 mgAs.
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Adding up, we find that along the whole path thaltavork done by friction forces jgmg s.
By energy conservation this must equal the decnegdein potential energy of the skier.
Hence

c) Let the temperature increase in a small time irdefvbedT. During this time interval the
metal receives an enerdydt.

The heat capacity is the ratio between the enargyl®ed and the temperature increase:

_pat_ P
PdT  dT/dt’

The experimental results correspond to

W :%a[l+a(t—t0)]_3/4 :ToE

()
dt 4\T/°

Hence

Cp:—P = 4P4T3.
dT/dt aT,

(Comment: At low, but not extremely low, temperatures hesgpacities of metals follow such
aT’law.)

d)



L 1,

Under stationary conditions the net heat flow &s$ame everywhere:

J=o(T =T}
J=o(T) -T,)
J=0o(T,; -T

Adding these three equations we get
31 =0Ty =T = J,
where J,is the heat flow in the absence of the heat shiglds { = J/J, takes the value

=1

€) The magnetic field can be determined as the pogéion of the fields of twaylindrical
conductors, since the effects of the currentseénatiea of intersection cancel. Each of the
cylindrical conductors must carry a larger curiéndetermined so that the fractibof it is
carried by the actual cross section (the moon-gshapsa).

The ratio between the currentandl “equals the ratio between the cross section areas:

1 _(E+9D?* _2m+3J3
K D2 6mr

Inside one cylindrical conductor carrying a currénfmpeére's law yields at a distancéom
the axis an azimuthal field

g = Ho l'7m? _ 2u,l'r

°"2m D> 1D’

The cartesian components of this are

For the superposed fields, the currentstaFeand the corresponding cylinder axes are located
atx =x D/4.



The two x-components add up to zero, while theyponents yield

2U Hol! 64l
B, =~E3[I'(x+D/4) - 1'(x-D/ 4] =2—= =
y 71[)2[( )~ 1 ) ™  (2m+3J3)D

i.e., aconstant field. The direction is along the positiyeaxis.



Solution problem 2

a) The potential energy gaeV is converted into kinetic energy. Thus

1my® =eV (non-relativistically
2
M _me?=ev  (relativistically).
1-2%/c?
Hence
./2eV/m (non - relativistically)
v= 2 (1)
c\/ 1-(— Ty (relativistically).
mc” +eV

b) WhenV = 0 the electron moves in a homogeneous static etagireld. The magnetic
Lorentz force acts orthogonal to the velocity amel électron will move in a circle. The initial
velocity is tangential to the circle.

The radiusk of the orbit (the "cyclotron radius") is determihiey equating the centripetal
force and the Lorentz force:

2
Mo,

eBv, = ,

R

(2)

From the figure we see that in the critical cagertidiusk of the circle satisfies
Ja’+R* = b-R

By squaring we obtain



a’+R? =b*-2bR+ R’
R=(b*-a%)/2b
Insertion of this value for the radius into the eegsion (2) gives the critical field

B =M% _ 2bmy,

© eR (b*-ade

¢) The change in angular momentum with time is peediuby a torque. Here the

azimuthal componernt, of the Lorentz forceF = (-e) Bx 7 provides a torqués;r . It is only

the radial component, = dr/dt of the velocity that provides an azimuthal Lorefuize.
Hence

% =eBr ﬂ’
dt dt
which can be rewritten as
2
d-%%=0
dt 2
Hence
C=L-%eBr? (3)

is constant during the motion. The dimensionlesalyerk in the problem text is thuks =1 .

d) We evaluate the constdadt equation (3), at the surface of the inner cyliraied at the
maximal distance,,
0-1eBa’ = mor, —1eBr?
which gives
_eB(r2-a?%
T o

m

(4)

Alternative solution: One may first determine the electric potenti@l) as function of the
radial distance. In cylindrical geometry the figddls off inversely proportional to, which
requires a logarithmic potential(s) = ¢, Inr + ¢,. When the two constants are determined to
yield V(a) = 0 andV(b) = V we have

V(r) :VM
In(b/ a)

The gain in potential energgV (r,,), is converted into kinetic energy:

1 v = eV In(r,, / a)l
2 In(b/ a)



Thus

V:\/Ze\/m(rrn/a) 5)

m In(b/a)’

(4) and (5) seem to be different answers. Thislg apparent since, is not independent
parameter, but determined ByandV so that the two answers are identical.

e) For the critical magnetic field the maximal distamg equalsd, the radius of the outer
cylinder, and the speed at the turning point isthe

_eB(b’ -a%)
2mb

\

Since the Lorentz force does not work, the corredpw kinetic energy m«? equalsV
(question a):

v=,2eV/m.
The last two equations are consistent when

M: /29V/m.

2mb

The critical magnetic field for current cut-offtiserefore

_2b 2mvV
B, = 5 5 .
b —a e

f) The Lorentz force has no component parallel gontfagnetic field, and consequently the
velocity component, is constant under the motion. The correspondiagldcement parallel

to the cylinder axis has no relevance for the qoesif reaching the anode.

Let » denote the final azimuthal speed of an electranltarely reaches the anode.
Conservation of energy implies that

EM@E 40l o) +eV = dm + o),

giving

v= \/vrz +v; +2eV/m. (6)
Evaluating the constad in (3) at both cylinder surfaces for the criticaiation we have

myv,a-4eBa’ = mib-4eBb’.



Insertion of the value (6) for the velocityields the critical field

B = 2m(b-vsa)  2mb

= e Sl eim a3




Solution Problem 3

a) With the centre of the earth as origin, let teatee of mas€ be located at . The
distancd is determined by

Ml=M_(L-1),
which gives
Mm
M+M,_
less tharR, and thus inside the earth.

L = 463010 m, 1)

The centrifugal force must balance the gravitatiatizaction between the moon and the
earth:

Mol =G Ml\fm :
L
which gives
wzx/GL'\flm =\/G(M;Mm) = 2.67(10°s™". @)

(This corresponds to a periodv@= 27.2 days.) We have used (1) to eliminate
b) The potential energy of the mass pamtonsists of three contributions:

(1) Potential energy because of rotation (in thatnog frame of reference, see the problem
text),

1
- = ma’r?,
2

wherefT; is the distance fror€. This corresponds to the centrifugal foroev’r, , directed
outwards frontC.

(2) Gravitational attraction to the earth,

g™
r

(3) Gravitational attraction to the moon,

wherer,, is the distance from the moon.



Describing the position ah by polar coordinates ¢ in the plane orthogonal to the axis of
rotation (see figure), we have

i?=(r-1)*=r°-2ricosp +I°.

—moon
Adding the three potential energy contributions,olséain
V(F) = =L ma?(r - 2rlcosp +12) - ™ _ g MMy, 3)
2 r C-r|
Herel is given by (1) and
P [= (L =17 =V L2 = 20F +r? = L1+ (r/L)? - 2(r/L)cosp,
¢) Since the ratio/L = ais very small, we may use the expansion
1 2
=1+acosp+a’i @Bcodg-1).
J1+a® - 2acosg
Insertion into the expression (3) for the potergiargy gives
2
V(r,¢)/m:—%w2r2—%—62ﬂ§r (3cog ¢ 1), @)

apart from a constant. We have used that
r
maw’rl cosg — GmMmF cogp =0,

when the value otv?, equation (2), is inserted.

The form of the liquid surface is such that a n@sEst has the same enefgeverywhere on
the surface. (This is equivalent to requiring no net forcegantial to the surface.) Putting

r=R+h,

where the tidd is much smaller than R, we have approximately

10



11 _1 1 1 h, _1 h
S= =2 Oo@-2) ===
r R+h R1+(h/R) R R R R
as well as
r’ =R*+2Rh+h* 0OR*+ 2Rn.
Inserting this, and the value (2) @finto (4), we have
2
v(r,gym= - MedRp oy Sy SMal (3608 ¢ -1), ©)

again apart from a constant.
The magnitude of the first term on the right-hait ©f (5) is a factor

(M + Mm) (5)3 Dlo—S
M L

smaller than the second term, thus negligiblehdfriemaining two terms in equation (5)
compensate each othee.

_ M, r°rR?
2mL°

h (3cos ¢ - 1),

then the mass point has the same energy everywhere on the surffere r* can safely be
approximated bfR*, giving the tidal bulge

M R’

h=
2mL°

(3cos ¢ - 1).

The largest valud . = M_R*/ML® occurs for ¢ = 0 or 77 in the direction of the moon or in
the opposite direction, while the smallest valyg = -M_R*/2ML® corresponds t¢ = 772
or 3772. The difference between high tide and low t&léherefore

_3M, R

~h_ . = - =054m.
oML ——

(The values for high and low tide are determinedauan additive constant, but the difference
is of course independent of this.)
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