COUNTRY :

XXIV INTERNATIONAL PHYSICS OLYMPIAD

WILLIAMSBURG, VIRGINIA, U.S.A.

THEORETICAL COMPETITION

July 12, 1993

Time available: 5 hours

READ THIS FIRST!

INSTRUCTIONS:
1. Use only the pen provided.

2. Use only the marked side of the paper.

3. Begin each problem on a separate sheet.

4. Write at the top of each and every page:
- The number of the problem
- The number of the page of your solution in each problem
- The total number of pages in your solution to the problem.

Example (for Problem 1): 1 1/4; 1 2/4; 1 3/4; 1 4/4.
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General Tabulated Information

Quantity
Earth’s mean radius

acceleration due to gravity

Newtonian gravitational constant

permittivity of vacuum

permeability of vacuum

speed of light in vacuum (or air)

elementary charge

mass of electron

mass of proton

Planck constant

Avogadro constant

Boltzmann constant

molar gas constant

Symbol

Rg

74

Value

6.4 x 106 m.

9.8 ms=2.

6.67 x 10-1! Nm2 kg2.

8.85x 10-12C2N-! m2,

8.85x 107 N A2,

3.00x 108 ms!.

1.60 x 1019 C.

9.11 x 103! kg.

1.67 x 1077 kg

6.63 x 10347 s,

6,02 x 1023 mol-L.

1.38 x 1023 J K-1,

8.31 J moll K-1.



Theoretical Problem 1

ATMOSPHERIC ELECTRICITY

From the standpoint of electrostatics, the surface of the Earth can be considered to be
a good conductor. It carries a certain total charge , and an average surface charge
density o,

1) Under fair-weather conditions, there is a downward electric field, E,, at the Earth's
surface equal to about 150 V/m. Deduce the magnitude of the Earth's surface ctarge
density and the total charge carried on the Earth's surface.

2) The magnitude of the downward electric field decreases with height, and is about 100
V/m at a height of 100 m. Calculate the average amount of net charge per m? of the
atmosphere between the Earth's surface and 100 m altitude.

3) The net charge density you have calculated in (2) is actually the result of having almost
equal numbers of positive and negative singly-charged ions per unit volume (7, and n.).
Near the Earth's surface, under fair-weather conditions, 7, =~ n_~ 6 x 108 m. These ions
move under the action of the vertical electric field. Their speed is proportional to the field
strength:

v=~1.5x 104 E

Field

where v is in m/s and £ in V/m. How long would it
take for the motion of the atmospheric ions to
neutralize half of the Earth's surface charge, if no

other processes (e.g. lightning) occurred to maintain
it?

4) One way of measuring the atmospheric electric
field, and hence o, is with the system shown in the
diagram. A pair of metal quadrants, insulated from
ground but connected to each other, are mounted just
underneath a grounded uniformly rotating disk with
two quadrant-shaped holes cut in it. (In the diagram,

the spacing has been exaggerated in order to show the

arrangement.) Twice in each revolution the insulated @
quadrants are completely exposed to the field, and

then (1/4 of a period later) are completely shielded o S0°
from it. Let T be the period of revolution, and let the

inner and outer radii of the insulated quadrants be r, Q
and r, as shown.

(Continued on next page)
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Take ¢ = 0 to be an instant when the insulated quadrants are completely shielded.

Obtain expressions that give the total charge g(r) induced on the upper surface of the
insulated quadrants as a function of time between ¢ = 0 and ¢ = 7/2, and sketch a graph of .
this varation.

[The effects of the atmospheric ion current can be ignored in this situation.]

(5) The system described in (4) is

connected to an amplifier whose input

circuit is equivalent to a capacitor C and

a resistor R in parallel. (You can assume Q—Q M
that the capacitance of the quadrant 1
system is negligible compared to C.) 1 R
Sketch graphs of the form of the voltage T
difference ¥ between the points M and N - \
as a function of ¢ during one revolution T \‘( N
of the disk, just after it has been set into Amplifier input terminals
rotation with period of revolution T, if:

a) T=T,<«CR;
by T=T7,> CR.

[Assume that C and R have fixed values; only T changes between situations (a) and (b).]
Obtain an expression for the approximate ratio, ¥,/V,, of the largest values of ¥(/) in cases
(a) and (b).

6) Assume that £, =150 V/m, r,=1cm, r,=7cm, C=0.01 uF, R=20 MQ, and
suppose that the disk is set into rotation at 50 revolutions per second.

Approximately, what is the largest value of ¥ during one revolution in this case?
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1) By Gauss’ law, o= ¢gE,;
¢ =-8.851012x 150 LLHEO
= - 1.3 x 10°° ¢/m2.
=
Q = 47R20 = 4mwx (6.4:10%)2x 1.3:10° = - 6.7-10° C.

2) Consider a cylinder of cross-section A with faces at heights of

Oal'ld 100 m. — h: loo'
By Gauss’ law, E(0)A - E(100) A = Genclosed o

= P aveX (1004)/¢,.

_ &[E(0)- E(100)] Lave.
Pave. = 100
-12 P --== '--..\'1
=W=4.4x10-lchm3_ \\_/—hzo
lE(o}

3) If a conductor contains n charges per unit volume, each with charge ¢ and travelling with speed
v, the current per unit area (j) is given by:
J = ngv.
Here, we have both positive and negative charges (£ ¢). Clearly, with adownward electric
field, the positive charges move downward and the negative charges move upward.
In the situation as described, only the positive charges can contribute to neutralization of the
Earth’s surface charge. Hence we have (taking downward as the positive direction for this
purpose):
j=nev
= (6+108) x (1.6-10°19) x (1.5-10* E)
=144 x 1014 E.
Now j is the rate of change (dg/dr) of the surface charge density o, and E (if defined as
positive downward) is equal to -o/¢,. Thus the above equation can be written:

d____14410141— LM—0'=-1631030'=-J—0'
dr € 8.85-10-12

This is just like the equation of radioactive decay. Its solution is an exponential decrease of &
with time:

o() = o,e*/T,  with T ~ 600 sec.
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Putting o(r) = 0 /2 then gives t = T4n2 = 0.693 x 600 = 415sec = 7 min.

[A simpler approximate solution is to assumne that/j remains constant at its initial value j:
Jjo = 14410 E = 144107 x 150 = 2.15 x 10-12 A/m2.

With lol = 1.3 10" C/m? from part 1, we would then put:
lo,/2! = j,xt,givingr = (0.65:109)/(2.15-10-'2) = 300s = 5 min.]

4) If t = 0 is an instant at which the insulated quadrants are completely shielded, we have the
following relations:

For 0<r < %, q() = - 273 - r)cEok .

For §< t < g q(t) = - m(r3- rlz)eoEo(l-%_—’ .
Corresponding variations occur during all the succeeding pairs of quarter-cycles.
The maximum (negative) induced charge is given by:

dmax. = g(r%‘ rlz)eoEo- 0 ' T/ T/2

Fma.

5) This question can be discussed without making a full circuit analysis. One only needs to realize

that the rate of flow of charge into the amplifier is divided into a rate of charging of the
capacitor, C dV/ds, and a conduction current, V/R, through the resistor. There are then two
extreme situations, depending on whether the amount of charge lost by leakage during one
quarter-period is small or large compared to CV.

(@)If CV » (V/R) x (T/4) --i.e., T =T, «CR -- very little of the charge is carried away

through R during the time T/4. Thus, when the insulated quadrants are charged negatively

through induction, an almost equal positive charge is given to C. Thus V(1) rises almost
linearly with ¢ between ¢ = 0 and ¢ = T/4, and then decreases almost linearly by an equal
amount between t =T/4 and ¢ = T/2. In this case,

Vo=
Vmax.=va = 'lqu“',,

where g, has the value obtained in part 4.% 0f T2

(b) If, however,T = T, »CR -- i.e., CR « T, -- most of the charge is quickly carried away
through R. A constant positive current flows through R when the magnitude of g is
increasing, and an equal negative current when the magnitude of ¢ is decreasing. The size

T

*Note: Ultimately (unless CR is infinite) the form of V, will become a sawtooth varying
symmetrically between t gp,,, /2C. The statement of the problem avoids this
complication by specifying that V is measured just after the rotation has begun.
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of this current is approximately equal to Ig,,5 V(T/4). The resulting voltage across R is
approximately constant during each quarter-period, and is alternately positive and negative.

In this case, Vy —
4 gmax R
1% = Vp = /2%
max. b Tb 0 ‘-I‘/:. T
.'Vb“‘
Putting these results together, we see that:
Va . Tp
Vi 4CR

6) Wehave CR = 108x 2107 = 0.2s,and T = 1/50 = 0.02s.
Thus CR = 10 x T, which satisfies the criterion CR » T.

Therefore we can use the solution 5(a) above.
We have Apy. = -;ﬁ (72-12) = 75cm? = 7.5x 103 m2.

E, =150V/m = o = ¢E, = 1.33 x 10 C/m? (asin part 1).
= 13310"x751072 = 1.0x 1011 C,

<+ 9max

1.0 x 10-11
and 50 Ve, = 1ma% - L 103V = 1 mV.

c 1.0 x 108

o\ ical Problem 1: Grading Sct
Part 1. 1 point (1/2 point for o, 1/2 point for Q)
Part 2. 1 point

Part 3. 2 points (1/2 point for recognizing j = nev;

1/2 point for recognizing j = do/ds;
1/2 point for getting o'(t) = o, ¥/ T;
1/2 point for final numerical answer.)

[1 point maximum for using = 0/2/,.]

Part 4. 1-1/2 points  (1/2 point for each equation;
1/2 point for graph.)
Part 5. 3-12 points (1 point for correct graphical form of (a);

1 point for correct graphical form of (b);
1-1/2 points for correct evaluation of V /V,.)

Part 6. 1 point (1/2 point for recognizing that T « CR;
1/2 point for final answer)
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LASER FORCES ON A TRANSPARENT PRISM

By means of refraction a strong laser beam can exert appreciable forces on small
transparent objects. To see that this is so, consider a small glass triangular prism with an
apex angle A = m - 2«, a hase of length 2k and a width w. The prism has an index of

refraction n and a mass density p.
Suppose that this prismis placed ina

laser bearn travelling horizontally in the x
direction. (Throughout this problem assume
that the prism does not rotate, i.e., its apex
always points opposite to the direction of
the laser beam, its triangular faces are
parallel to the xy plane, and its base is
parallel to the yz plane, as shown in Fig. 1.)
Take the index of refraction of the
surrounding air to be n,;, = 1. Assume that
the faces of the prism are coated with an
anti-reflection coating so that no reflection
occurs.

The laser beam has an intensity that is

uniform across its width in the z direction - . «

but falls off linearly with distance y from the —_ l y

x axis such that it has a maximum value of /, -

aty =0 and falls to zero at y = +4h (Fig. 2). — _:v- ’

[Intensity is power per unit area, e.g. =" \J|T % x
expressed in W m2,] —_— -

1) Write equations from which the angle ¢
(see Fiz. 3) may be determined (in terms of
« and n) in the case when laser light strikes
the upper face of the prism.

(Continued on next page)
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2) Express, in terms of [, 6, h, w and y,,, the x and y components of the net force exerted
on the prism by the laser light when the apex of the prism is displaced a distance y,, from

the x axis where Iy | < 3h.

Plot graphs of the values of the horizontal and vertical components of force as functions of
vertical displacement y ,.

3) Suppose that the laser beam is 1 mm wide in the z direction and 80 um thick (in the
y direction). The prismhas a=30°, h=10 um,n= 1.5, w =1 mmand p=2.5 gcm3.
How many watts of laser power would be required to balance this prism against the pull of
gravity (in the -y direction) when the apex of the prism is at a distance y, = -4/2 (= -5 um)
below the axis of the laser beam?

4) Suppose that this experiment is done in the absence of gravity with the same prism and
a laser beam with the same dimensions as in (3), but with /, = 103 W m2,
What would be the period of oscillations that occur when the prism is displaced and
released a distance y = h/20 from the center line of the laser beam?
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1. This is 2 simple problem in geometry and Snell’s Law

N

Figure 1: Refraction through a wedge.

The angle of incidence a3 = a because ¢y = @ and a; + a2 = a2+ a3 =
90°. The angle 8 is found from Snell’s law sina = nsinfd. The angle
of incidence on the base is

e

S -(r—a-(3-B)=a=p

from which it follows that

sinf = nsin(a - B)

T . -1 (sina
=sin”" [n sin| a — sin
n

. The force on the prism is equal and opposite to the rate of change
of momentum of the laser light passing through it. To analyze this,
consider the momentum changes of the laser light incident on the upper
half of the prism.

Think of the laser beam as delivering to the upper half of the prism
r4 photons per second parallel to the x axis. If the energy of a2 photon
is E, then its momentum is p; = % i, and a photon leaving the prism
at an angle § to the x axis will differ in momentum from the incident
photon by

implying that

6p = g—(cosﬂ -1)i- —1;2 sin § 3.
The rate of charge of momentum of these photons will then be

- Ty

Fopp=r.p= —é—q [(cos§ ~ 1)1 —sind j.]
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"Figure 2: I, and [, when yo > &

4

P

=

/17
i
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Figure 3: I, and I, when 0 < yo < h




The quantit):r.,E. is the power P, delivered to the upper face, and the
recoil force F, produced by light refracting through the upper half of
the prism will be

F, = —}:—" (1 —cos8)i+sinéd j].
A similar argument gives the force on the lower half as
F = % [((1 —cos8)i—sindj.
From these two results we see that the net force on the prism will be
F=2[(Pa+ P)(1 —cos6)] i 4= (P, — P sind] 5.

The angle 8 can be exprcsse& in terms of  (see answer to part 1).

To find the values of P, and P, calculate the average intensities, I, and
I,, incident on each half of the prism and multiply by hw, the area
of each half of the prism projected perpendicular to the laser beam.
Because the intensity distribution I(y) is a linear function of y, the
average intensities are easily determined.

The problem states that

I(y) = Io(l_zyl_;) for 0 <y < +4h
Yy
= T - —_ 0.
°(1+4h) for —4h <y <

Now suppose that the prism is lifted a distance yo from the x axis
(yo > 0). There are two distinct cases:

(a) When & < yo < 3k, the whole prism is entirely in the upper half
of the beam. As Fig. 2 shows, for this case the average is equal
to the intensity at the zenter of each face which is at yo + h/2 for
the upper face and at yo — /2 for the lower one. This gives

I'..=Io<1—1‘1+—h[3) = Io(z—ﬂ)

ah 8 4h
7 —h/2 9 v
Li=rn(1-%2=2E) - (- - —)
e (1 4h ) Liz-a

From these it follows that

Zh‘lDIo yo)
F, = 22 () %) _
c (1 A (1 —cos8)
F, = —}“”f sin 6.
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(b) When 0 < yo < A, the lower half of the prism is partly in the lower
half of the laser beam as shown in Fig. 3. Then the part of the
lower half of the prism between 0 and y, has a fraction yo/k of the
area of the lower half of the prism and sees an average intensity

I =Iw/2) =1 (1-%).

The part between 0 and yo — h has a fraction 1 — yo/h of the area
and sees an average intensity of

_ h— 7
f= 15 =0(5+ ).

Putting these together we get

P, = hw ?ff,l +hw (1 - %)fg,

T . % v
= hwly [+ +3% _ 30
w°(8+4h 4h?

The average intensity on the upper face has the same functional
dependence on yg as in the first case. Therefore, P, = hwlp (g - ﬁ)
as before.

Putting these together gives
L
P,+P = huwl|-—-—

YT
Yo Yo
=P = —hul R (1-2
Pu—F hw‘r"%( 2.’:)

from which it follows that

2
F, = A0k (Z - _29_) (1 —cosb)

c 4 4p?
hwl yu( yo) .
F = —220m(y W)
v e 25 \l T g3)"8

Because the intensity distribution is symmetric about the axis of the
laser beam, the solutions for yo < 0 will mirror the solutions for yo > 0.
Graphs of the F; and F, as functions of yo are shown in Fig. 4.

. Both the equation and the graph of F, show that to have F, > 0 and
opposite the force of gravity, yo must be < 0. Then to find the force
necessary to support the prism against gravity, find the prism’s mass,
and equate the expression for the vertical component of force from the
laser beam to the weight of the prism, and find I for the parameters
given. Use that result to find the total power in the laser beam. This
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L] '
i 0 h 2k 3h X <3 -2k -h 10 hi  2h 3k
Y, = ~h/2 !

Figure 4: (a)F: vs yo; (b) F, vs yo

can be done by finding the average value I over the specified cross
sectional area of the laser beam.

To find the mass of the prism first find its volume = tan a h’w then

1
m = — x (10732 x.1x2.5
7 (1077)
= 144x1077 g
1.44 x 107'° kg;

mg = 142x107°N

The solution to (2) assumed a displacement in the y > 0 direction, but
the problem is symmetric so we can use that solution. We want the
value of I that satisfies

Iohw yo ( 3’0) ; -9
T 1 ok sinf = mg = 1.42 x 10
when
8 = 15.9°
_ h
Yo = )
h = 10x10°m
w = 107 m

3x10% x1.42 x10°°

= = 8.30 x 10° W/m’
105 x 109 x 27ax & - 20 X 107 W/m

Io

since the power P is given by P = ] x area of laser beam where I = -g“

This yields

1
P= 3 X 8.30 x 10® x 1073 x 80 x 106 = 33.2 W.
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4. A displacement of h/20 corresponds to yo/h = .05 << 1 so that the
vertical force component is well approximated by

Tow sin 8
-

F= 2c

This is the equation of a harmonic osdllator with angular frequency

w = Iow Sin9 _ Io Sine
- V 2me  \ 2cph?tana’

Putting numbers into this gives

- _2:1r _ 2"J 2 x 3 x 108 x 2igaxxl,()237: 10-10 x 1/4/3 —11.2%10°% s.

Part 1. 1.5 points

Part 2. 5 points (2 points for obtaining expression for net force in terms of
g and powers P, P, incident on upper and lower prism faces ;
1 point for finding F, and F. y explicitly in terms of /;, y,,
and 8 forh <y, <3h;

1 point for finding F, and F explicitly in terms of /,, y,,

and 8 for 0<y,<h;
1 point for drawing appropriate graphs)

Part 3. 1.5 points

Part 4. 2 points
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Theoretical Problem 3

ELECTRON BEAM

An accelerating voltage V , produces a uniform, parallel beam of energetic electrons.
The electrons pass a thin, long, positively charged copper wire stretched at right angles to
the original direction of the beam, as shown in the figure. The symbol b denotes the
distance at which an electron would pass the wire if the wire were uncharged. The electrons
then proceed to a screen (viewing surface) a distance L (> b) beyond the wire, as shown.
The beam initially extends to distances +b,,, with respect to the axis of the wire. Both the width of
the beam and the length of the wire may be considered infinite in the direction perpendicular to
the paper.

—_— viewing surface

electron beam
-

The charged wire extends perpendicularly to the plane of the paper. The sketch is not to scale.

Some numerical data are provided here; you will find other numerical data in the table at the
front of the examination:

radius of wire = r, = 106 m

maximum value of b = by,, = 104m

electric charge per unit length of wire = @jjpear = 4.4 x 1011 Cm’!
accelerating voltage = V, = 2x 104V

length from wire to observing screen = L = 0.3 m.

Note: For parts 2 - 4, make reasonable approximations that lead to analytical and numerical
solutions.

1) Calculate the electric field E produced by the wire. Sketch the magnitude of E as a function of
distance from the axis of the wire.

(Continued on next page)
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2) Use classical physics to calculate the angular deflection of an electron. Do this for values
of the parameter b such that the electron does not strike the wire. Let 8, denote the
(small) angle between the initial velocity of the electron and the velocity when the electron
reaches the viewing surface. Hence, calculate 8g,,.

3) Calculate and sketch the pattern of impacts (i.e., the intensity distribution) on the viewin g
screen that classical physics predicts.

4) Quantum physics predicts a major difference in the intensity distribution (relative to what

classical physics predicts). Sketch the pattern for the quantum prediction and provide
quantitative detail.
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1. By symmetry, the electric field will point radially away from the wire, and its magnitude will
depend only on the radius  (in cylindrical coordinates). Place an imaginary cylinder around the
wire and use Gauss's law:

_ E(r)
271'I'E(f) = Qlinear
o
for a cylinder of radius 7 and unit length, provided r > ;. Therefore
0.791 0= r
E(r)=%—°ﬂ-=—'—N/C provided r2r,. £
2rreg r

When r < r,, the electric field is zero (because copper is a good conductor), that is, the electric
field is zero inside the wire.

2. The problem stated that the angular deflection is small. Estimate the deflection angle 8¢, by

forming a quotient: the momentum acquired transverse to the initial velocity divided by the initial
momentum:

~|Ap-|-| -.—q-——————
O g ——_
0
b
. ®
A first estimate of the transverse momentum 1

can be made as follows:

€tinear )
2megh

The (significant) transverse force operates for a time such that the electron goes a distance
of order 25, and hence that transverse force operates for a time of order 25/v; .

The product of force and operating time gives an estimate the transverse momentum:

The transverse force (where it is significant) is of order

lAp.Ll = €linear 20 — €linear ,
271’8obV0 &YYo

eqy; { -5
and so Oga= i‘“—‘%— = Alinex_ 3 96 %1075 radians
zEYMY 7TEY 2V 0
after one uses energy conservation to say %mvg =eV,. Note that the deflection is extremely

small and that the deflection is independent of the impact parameter . Because the force between
the positively charged wire and the electron is attractive, the deflection will bend the trajectory
toward the wire—though only ever so slightly.
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A more accurate estimate can be made by setting up an elementary integration for |Ap |,
as follows. For the sake of the integration, approximate the actual trajectory by a straight line that
passes the wire at distance b, as shown in the sketch.

Vo At —4
Y\
b | ¢ rag
4

|FJ_|=—egﬁnﬂcos¢ voAtcosp=rAp andso Ar= rae

2rggr Vocos g
[Fy|at = “Glinesr o5 p TAP_ _ linear

2regr VoCosQ 2mgyvg
Adding up the increments in Ag over the range -7/2 to /2 yields |Ap, |= %q“—"g‘i.
€Yo

The better estimate differs from the first estimate by merely the factor #. The better estimate
yields

~ Qtincar _ _9Qlinear =3 radi
0 = — AL = AL — 6 9] x 107 radians.
fnal™ 5 gomvi 262V,

3. Most of the bending of the trajectory occurs within a distance from the wire of order 4. On
the scale of L, order & is very small indeed. Therefore we may approximate the trajectory by two
straight lines with a kink near the wire. Thus, at the viewing surface, the transverse displacement
of each trajectory is

transverse _s s
= Opipall =6.21x107° x0.3=1.86x107> meter =197y >> rpy.

displacement

Thus the portions of the beam that pass on opposite sides of the wire have a region of overlap, as
shown in the sketch.

\

}/ « | Gt-n,
- \'i
\ 53
;) wa' B‘L
: =8.4x10 5 m
3
&

/
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The full width of the overlap region is
full -
5 =2 x(Bpgall — 7o) =367 =36 %107 meter.
width

The density of impacts is constant within each region and doubled in the overlap region.

4. Associated with the electron beam is a quantum wave pattern whose de Broglie wavelength is

A=t B _568x107? meter.
mvg ﬁme Vy
The de Broglie wavelength is so much smaller than the beam width 25, that one may ignore
"single slit diffraction” effects. Rather, to the right of the wire, two plane waves that travel at a
fixed angle relative to each other (an angle 26y, ) overlap and interfere. In the region where,
classically, the two halves of the original beam overlap, there will be interference maxima and

minima. TS
¥
P
7 2
é 3
/ S~
77 S
Y 3
<
A
7S
7 @
7 3
T
&

Reference to the sketch indicates that

Interval between 1 i
ste 1x868x10712
( p)= /2 = A I Rehaaide =7.00x10"% meter.

adjacent constructive |= o —i—gLll-g —
interference locations Y final final 6.21x10

Because the region of overlap has a full width of =36 x 10~ meter, there will be roughly 500
interference maxima. Note that the interval between adjacent maxima does not depend on either b

or b, (unlike the situation with ordinary "double slit interference").

Historical note. This problem is based on the now-classic experiment by G. Mollenstedt and H.
Duker, "Observation and Measurement of Biprism Interference with Electron Waves,* Zeitschrift

fur Physik, 145, pp. 377-397 (1956).
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Theoretical Problem 3: Grading Sct

Part 1. 1 point.
E(r) correct outside of wire: 1 point.
E(r) inside wire: ignore in the grading. (Some students may ignore the interior because
there is no field there.)

Part 2. 5 points, distributed as follows:
6 gnar independent of 5: 1 pt.

eqy; i .
6 final ocﬂ‘%’— or Jlinear o equivalent: + 1 pt.

&My SOV 0

Numerical coefficient correct to within a factor of 4: + 2 pts.

Numerical coefficient correct to within 20 %: + 1 pt.

Part 3: 1.5 points:
Overlap region exists: 0.5 pt.
Constant densities of impacts within each region: + 0.25 pt.
Correct ratio of intensities: + 0.25 pt.
Full width of paitern correct, given student's value for 8 gna: T0.25 pt.
Width of overlap region correct, given student's value for 8 g, : +0.25 pt.

Part 4. 2.5 points:
Recognizes that "two wave" interference occurs: 0.5 pt.
Correct de Broglie wavelength : 0.5 pt.
Correct separation of maxima: + 1.5 pts.
[If separation of maxima is wrong by merely a factor of 2, then partial credit: +1 pt.]
Maxima in intensity = 4 times single-wave intensity: ignore in grading.
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COUNTRY :

XXIV INTERNATIONAL PHYSICS OLYMPIAD
WILLIAMSBURG, VIRGINIA, U.S.A.

PRACTICAL COMPETITION
Experiment No. 1

July 14, 1993

Time available: 2.5 hours

READ THIS FIRST!

INSTRUCTIONS:
1. Use only the pen provided.

2. Use only the marked side of the paper.
3. Write at the top of each and every page:
- The number of the problem
- The number of the page of your report
- The total number of pages in your report.

Example (for Problem 1): 1 1/4; 1 2/4; 1 3/4; 1 4/4.
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Experimental Problem 1

THE HEAT OF VAPORIZATION OF NITROGEN

The object of this experiment is to measure the heat of vaporization per unit mass (L)
of nitrogen using two different methods. In Method #1, you will add a piece of aluminum
to the sample of liquid nitrogen and measure how much liquid nitrogen evaporates as the
aluminum cools. In Method #2, you will add energy in the form of heat at a known rate to
the sample of liquid nitrogen and measure the rate at which the liquid nitrogen vaporizes.

The liquid nitrogen is supplied to you in the “reservoir” container. Some of it can be
poured into the “sample” container, which can be placed on the mass balance. The reading
of the mass balance will decrease as liquid nitrogen vaporizes. This occurs (1) because the
container is not a perfect insulator, (2) because energy is being added to the liquid
nitrogen in the form of heat when the aluminum cools (in Method #1), and (3) because
energy is being added to the liquid nitrogen in the form of heat when current passes
through a resistor placed in the liquid nitrogen (in Method #2). A multimeter, which can
be used to measure voltage (V), current (/), and resistance (R), as well as a stopwatch are
supplied. Instructions for using the multimeter and stopwatch are attached.

Warnings
(1) Liquid nitrogen is very cold, so do not let it, or any object which has been

cooled by it, touch you or your clothing in any way.

(2) Do not drop anything in the liquid nitrogen, and wear safety goggles at all
times.

(3) Place the piece of aluminum in the liquid nitrogen slowly, as it will cause
the liquid nitrogen to boil rapidly until equilibrium is reached. A piece of
string is supplied for this purpose.

(4) The resistor can get very hot if it is not immersed in the liquid nitrogen.
Pass current through the resistor only when it is in the container and
completely immersed in liquid nitrogen.

Method #1

The specific heat of aluminum (c) varies significantly between room temperature and
the temperature at which liquid nitrogen vaporizes under atmospheric pressure (77 K). A
graph showing the variation of ¢ with temperature (7) is attached. Conduct an experiment
to measure how much liquid nitrogen vaporizes when the aluminum block is cooled. Use
this determination and the specific heat graph to determine the heat of vaporization per
unit mass of nitrogen. You may assume that room temperature is 21+2°C. Be sure to
provide a quantitative estimate of the accuracy of your heat of vaporization value.

Method #2

Conduct an experiment to measure the rate at which liquid nitrogen vaporizes when
current is passed through the resistor placed in the liquid nitrogen. A direct current power
supply is provided; use it only with the dial in the “8” position and do not disconnect the
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capacitor installed across its terminals. Use this result to determine the heat of

vaporization per unit mass of nitrogen. Be sure to provide a quantitative estimate of the
accuracy of your result.

Notes:
(1) Please include sketches, schematic diagrams, properly labelled tables, numbers

with the proper units, etc. so the graders can determine exactly what you did.
(2) Ask for assistance if any piece of equipment is not working properly.

Specific Heat of Aluminum

0.9 — T
///
< 0.7 . //
(@]
S 0.6 //
/I
© 0.5 L/
/
0.4 /
V4
/

0.3
50 100 150 200 250 300

T (K)
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Digital Stopwatch

mode

split/reset start/stop

o Perform Timing G :

1. Press "Mode” until 0 00 00 appears
(You may have to press “Mode” several times to get the 0 00 o0 to

appear)

ToTi Sinale | I
1. Press “Start/Stop” to start stopwatch.
2. Press “Start/Stop” to stop stopwatch.
3. Press “Split/Reset” to reset stopwatch to zero.

To Time Multiple Events Without Stopping the S el

Press “Start/Stop” to start stopwatch.

Press “Split/Reset” to stop the display while stopwatch keeps running.
Press “Split/Reset” to reset display to actual time.

Press “Start/Stop” to stop stopwatch after last event.

LU

Press “Split/Reset” to reset stopwatch to zero.
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/ Set dial to desired scale.

nu/aFFn

Insert red probe if using any
: C C of the voltage or resistance
10A A coM Y

scales.

Insert red probe if Insert black probe for
using 10A scale. all measurements.

Insert red probe if using a
current scale other than 10A,
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Add Al mass

125 -

Q=mc&T=mfch

pron Q=L oMy,
ks, m=194+0.1g
—— A
total mass clock time time
153 g 0:00.0 0
152 0:36.8 36.8
151 1:19.1 79.1
150 2:00.7 120.7
149 2:40.5 160.5
148 3.23.1 203.1
150 (130.6) 5:31.8 331.8
149 (129.6) 6:21.6 381.6
148 (128.6) 1173 457.3
147 (127.6) 8:08.6 488.6
146 (126.6) 9:00.9 540.9
145 (125.6) 9:54.6 594.6
AMyy, = 146.5-132.0
=145+03 g
\\




Specific Heat of Aluminum

>3 Py

paBRn!
0.8 A

0.7 4

c, (g K
o
(0))
=\
N\

o
w
o

50 100 150 200 250 300

293
[ cdT = (0.3)293-77) + (173)(0.5)
el
=~ 648 + 865 = 151+ 2J/¢g
Q= mcdl = (19.4+0.1 g)(151 +2 J/g)

= 2930+ 42 J.

L. _Q _29%0%42]
AMiIN2  145+03¢g

= 202%51/g
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Method _#2

P=0

3’2

Rer P=IV=V2R =R
Supply P=aQiat

I=0.56A

Q=M nL
R =23.0 Q (in LN,)
r_t_, V=127V

total mass  clock time time
156 4 0:00.0 0Os A 152 ~ o
155 0452 452 o 8, 5—ggp = ~00222§
154 1:31.4 914 o
153 2:162  136.2 S =SB0 . gasv2 &
152 2:20.0 1go.o ) + 200- %40
151 3472 22712 155 b _l43-135 _ _
,S'.1 = L= = 00194 &
150 4:13.6 2536
149 4:32.1 272.1
148 4:50.1 290.1 .~ )50}
147 5:08.9 3089 <
146 5:27.2 327.2 @
145 5:45.7 3457 ¢
144 6:04.1 364.1 145 F
143 6:21.9 381.9
142 7:02.3 4223
141 7:58.4 478.4 o
140 8:51.2 531.2
139 9:43.7 583.7
138 10:34.6 634.6 ,
137 11:307 6907 5§ rywy e s o
time {5)
Sp;eo = - 0054 + 0001 g/S
Spg> =-0.02010.001 g/s
Power = P = ,Q =L —-AMLNZI
fay; Jay4
P=1v =711W
P=PR =721W}P=71+01W
P=V2R =701W

laMyn/oarl = 0.054 - 0.020 = 0.034 + 0.0014 J/s

P 11%0.1

L= =
AMiny/Ar  0.034£0.0014

= 209+9J/g

115



Experimen : i h

1) 0.5
2) 0.5.

3) 0.5
4) 0.5
5) 0.5

6) 0.5
7) 0.5
8) 0.5

9) 0.5
10) 0.5

1) 0.5
2) 05
3) 0.5

4) 0.5
5) 0.5
6) 0.5
7) 0.5
8) 0.5
9) 0.5
10) 0.5

Method No. 1 (5 poi . :
Uses Q=mcaT0rQ=mchT

Uses Q=LAMy,

Measures mass of aluminum correctly

Measures AM| y;, in some way

Takes into account “thermal leakage” in some way and corrects for aluminum added
to container
Takes into account “thermal leakage” not being constant in time

Uses reasonable values for c and AT or does Ic dT integral in a reasonable way
No mistakes made in computing L

Error estimate is reasonable for methods used

Value for L is within bounds set by grading team using good procedures

Method No. 2 (5 points maximum)
Uses P=AQ0/At
Uses P=1V =I’R =V?R
Uses Q=LM|y,
Measures two parameters (to get P) correctly
Measures M| ;, in some way
Takes into account “thermal leakage” in some way
Takes into account “thermal leakage” not being constant in time
No mistakes made in computing L
Error estimate is reasonable for methods used

Value for L is within bounds set by grading team using good procedures
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COUNTRY:

XXIV INTERNATIONAL PHYSICS OLYMPIAD
WILLIAMSBURG, VIRGINIA, U.S.A.

PRACTICAL COMPETITION
Experiment No. 2
July 14, 1993
Time available: 2.5 hours

READ THIS FIRST!

INSTRUCTIONS:
1. Use only the pen provided, and only the equipment supplied.
2. Use only the marked side of the paper.
3. Write at the top of each page:
« The number of the problem
- The number of the page of your report
- The total number of pages in your report.
Example (for problem 1): 1 1/4; 12/4; 13/4; 14/4
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Experimental Problem 2

MAGNETIC MOMENTS AND FIELDS

This experiment has two parts:
Part 1: Todetermine the absolute magnitude uy of the magnetic moment of a small
cylindrical permanent magnet, contained in the envelope marked “X". (A similar
magnet, also needed for th.e experiment, is contained in the envelope marked “A".)

Part 2: Toinvestigate the magnetic field of a given axially symmetric distribution of
magnets, contained in the envelope marked “B”.

In your experiments, you should make use cf the following facts:

(1) The magnetic field B produced by a dipole magnet at a point along its axis at distance x from
its center is parallel to that axis and of strength given by:

r x -
B(x) = 2K o S e
x3 H B

where B is in Tesla [= N/(A m)], K = 10-7 Tesla m/A, x is in m, and g isin A m2,

(2) The period of small torsional (angular) oscillations of a horizontal freely suspended magnet,
such as a compass needle in the Earth’s magnetic field, is given by:

T =2m [——,
H3p

where B, is the horizontal component of the net field at the magnet, and I is the moment of
irertia of the magnet about a vertical axis through its center.

Apparatus
The apparatus is illustrated i the diagrams at the end. A thin thread is suspended from the

upper of two shelves on a wooden stand. A magnet (X" or “A”) can be attached to the bottom end
of the thread. A copper plate can be placed on the lower shelf, just below the suspended magnet, to
damp out its motion if desired. Two auxiliery wooden stands are provided. One of these serves as a
holder for either “A” or “X” in Part 1; the other holds the magnet system B (used in Part 2). Distances
between a suspended magnet and a magnet :mounted in one of the auxiliary stands can be measured
with a ruler mounted on that stand.

Yarning: These magnets are extremely strong. Hold onto them tightly and be careful
not to let them be pulled out of your fingers.

PART 1

The magnetic moment to be determiaed (u1y) is that of the pair of magnets in envelope X,
labelled at the ends with a letter-number combination. Always keep this pair together. The moment of
inertia of this pair has been calculated and written on envelope X. Envelope A contains another pair of
magnets with north and south poles marked respectively with black and red spots. This pair is similar
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to the pair from envelope X, though its magnetic moment (u,) cannot be assumed equal to uy.

A given pair of magnets can be “split” and placed around the bronze disk attached to the thread,
forming a “compass” whose torsional oscillation period may be measured. (The value /'y given on
envelope X includes the effects of the bronze disk.)

One magnet-pair, centered in the hole in the wooden holder, can be used to influence the
“compass” pair, possibly affecting its period and its angular equilibrium position. The angular
position is best studied by placing the copper plate a few millimeters below the “compass” so
as to provide electromagnetic damping. Please do not mark or write on the copper
plate.

You will need to use more than one arrangement of the magnets. Draw clearly labelled
diagrams showing each experimental arrangement used. Also, write equations to
show how you will combine your different observations to obtain the value of uy.

Keep all magnets in the same horizontal plane. Note for the main stand that the top knob can be
rotated, and the thread length adjusted. The position of each shelf can also be adjusted.

Practical Details OMPORTANT!)

1) COMPASS ASSEMBLY AND USE: Hold one magnet from a given pair between the thumb
and forefinger of one hand. Center the bronze disk over one end. Then, carefully, and
without pulling on the thread, slowly bring in the second magnet. This forms the compass
pair (“X" or “A"). Also, avoid pulling on the thread in taking the compass apart.

Warning: Rapid snapping of magnets or magnet pairs together can break the thread or
chip the magnets. The tiny loop can be threaded again if thread breakage occurs. (Consult the
organizers if necessary.)

2) Study the torsional mode of oscillation. To prevent excitation of the “pendulum” mode, a small
assembly made of copper wire is mounted on the lower shelf of the main stand. Rotate this
assembly so that the horizontal piece is up against the thread at a point about 2 mm above where
the thread is tied. With a slight additional rotation in the same direction, move the wire a few mm
further .

Warning: If this is not done, the two modes can “couple,” causing a periodic variation in the
ampluudc of the tors:onal oscillations, and af&mng_mmmg_d.

3) Keep magnetic or magnetizable objects stationary, and as far as possible from the experimental
area. Consider such items as the nail, wrist watches, pens, etc. The table has some steel

support parts; if you want to change the position of the apparatus, consider this fact.

Suggestions
(i) The torsion constant of the thread is quite srnall. It turns out that you can neglect its effect in
the analysis provided the thread is reasonatly long, e.g. around 15 cm.
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(ii) You may notice that a given magnet pair does not hang horizontally. This is because of the
vertical component of the Earth’s field. The effect of this on the analysis is small and should
be neglected. In other words, simply pretend that the magnet is horizontal.

(iil) We suggest that you postpone the error analysis for Part 1 until after you have made the
measurements needed for Part 2.

(iv) You should not make any assumptions about the magnitude of the Earth’s field.

PART 2

The aluminum tube (in envelope B) contains an axially symmetrical distribution of magnets.
The magnetic field along the x axis, B, , of this assembly varies as a function of distance x measured
from the center of the tube according to the relation B (x) = Cx”. Determine the exponent p, with its
approximate error. As sketched below, you should study the field on the side in the direction of the end
marked with a black spot.

WRITE YOUR SET-UP NUMBER ON YOUR REPORT. THIS IS THE
LETTER-NUMBER COMBINATION PRINTED ON THE: EQUIPMENT BOX
AND ALSO ON THE MAGNET ENVELOPES LIKE THIS:

#
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LoweR SELF : MAGNETIC ]
------------------------------------------- Noam'soum -
OIRECTION " COMPASS PAIR

COPPER PLATE

(RULER)
... PART2
UNKNOWN
.. USE NAIL HEAD TO
.. PULL MAGNET PAIR
-, FROM HOLE
/— [
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PART 1 : DETERMINATION OF piy
Basic Insight :

The idea which enables one to "see into” the problem is contained in the following remark: The

oscillation period of a given suspended magnet depends on the product of its moment and the

(horizontal component of) the Earth's field, while the extent to which that magnet can influence the

direction of another magnet used as a compass depends on the ratig of those two quantities.

It follows that by making measurements of both types, both the unknown moment and the

horizontal component of the Earth's field can be determined. We suspect that this idea goes

historically back to Gauss.

i lution : " -Aroun h

Experimental Arrangement Equation

#l: /é’/ Oscillates

2
Period = Ty HxBy = Ix QnTy)

/

abruptly 2K

Zz =< =8B
#2: / J turns around Hx Rg h
R ., when R=R,
e { usecopper | note thatthe |
!
i

damping plate;  , H and Ivalues

......... ' PR ]
beaneath | ‘of the compass

'
/ s/ ‘ + ¢ magnet
+  compass ¢ '

) i

N » do not matter
Combining @ and

- ... —--- - .- ----

@ one easily finds:

32
PR R
X mw r X
(25) X
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Second Solution : Dynamic Method with 3 Unknowns

Solution, Page 2

The experience from our tests was that the "Turn-Around” method did not occur naturally to most

students. They were much more comfortable with the idea of using one magnet to influence the period of

another. Since the magnetic moments are not necessarily equal, it is clear that two measurements will no

longer suffice. Qur guess is that the following 3-measurement scheme will be the most common student

choice.

Experimental Arrangement

#l: Oscillates

Period = Ty

. A
#2: @If' Oscillates
N Periodd=T,

&

N

A
74 // 1
l, Oscillates

/ TR >TA

j’é D, R>R,)

N

#3:

HxBj,

Equation

e S O

Ir@uT,)’ ©)

H By,

Ha [B;, -Hx —2§3' ] =1a (zm“)z @

Note that the X magnet (positioned at a distance R which is somewhat larger than the turn-around

distance Ro) is being used here to slow the oscillations of the A magnet on the compass.
One worries at first that there are actually < unknowns, since the inertial moment of A need not equal

that of X. Inspection of equations @ and @) shows, however, that the ratio W, /B;, can be expresed



Solution, Page 3
in terms of experimentally known quantities. Since@ gives the product W B, , the calculational

strategy is clear. One easily finds:

n 172
R 2% 21172
= —— (] 1-(T, [T
Hx (mm Tx ( X) [ AR ) ] @

Alternatively, by reversing its poles, one can use the X magnet to speed-up the oscillations of the A
magnet . Then, of course We have Tg < T, . In this case (which is formally equivalent to the first case,
with a reversal of the sign of K'), one finds:

n
R 2r 172 2 12
= — ] %
“x= ol T x) [a@ m)H*1] @
SAMPLE EXPERIMENT

The Dynamic Method just outlined was used (in the case where the X magnet was used to slow down
the oscillations of the A magnet in Arrangement #3). In all cases 20 oscillations were timed. The
distance R was (17.0£0.1) cm. The X moment of inertia was I, = (4.95 +0.1) x 10°kg m’. Using the

notation given previously, the data were as follows:

Measurements (in seconds) of 20Tx: 10.83, 10.99, 10.91, 10.94. [Arrangement #1]
Measurements (in seconds) of 20T At 1095, 11.10, 11.01, 10.92. [Arrangement #2]
Measurements (in seconds) of 20T, : 21.70, 21.65, 21.78, 21.59. [Arrangement #3]

Using a pocket calculator (HP32S) to obtain the averages and statistical errors gives:
Ty = (0.5461.003) sec

T , = (0.550+.004) sec

T = (1.084+.004) sec
The "statistical errors™ here are naively bassd on what the calculator gave for the estimated standard
deviation ground the sample mean. More carefully, one should divide this by the square root of the
number of observations to give the éstimatex| standard error of the sample mean. [Still more carefully,

for such a small sample, one should apply tte appropriate statistical correction factor]. For simplicity
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Solution, Page 4

we will use the naively calculated results. This will suffice for our purposes.

Wﬁzc@ as ux=G F, where
3 12 12
Ew— 7 =5 (1) and F =[1-0T, My 2]
(2K) Ty

The expression for G is identical for that for p in the "turnaround method" when R=R; . This must

be true, since in that case Ty goes to infinity.

Numerically
0.170+0.001) m]*/2 2 3 1
Ge == Al Z [@95£0.1)x10kgm? ]
"[2x107N/AZ1 2 (0.546£.003) sec

then standard error propagation and reduction of the units give

G = (0.401 + 0.006) Am 2

which is a 1.5% uncertainty. For F we find numerically :

(0.550+.004) sec ]2 } 12

F= {"000 | (1.084+.004) sec

The central value here is 0.862. One can easily use a pocket calculator to see the effects of the
permitted statistical variations in each of the two places above. This shows that the effect of the
numerator uncertainty is essentially + 0.0022, while that of the denominator is *+ 0.0013. Combining
these statistically gives an net uncertainty in F of 0.0026, so that the fractional uncertainty in F is

0.0033. [ An analysis of this by calculus is straightforward, but cumbersome.] Then the fractional

uncertainty in {4 X is practically thatin G. We find:
My =(0.862 = 0.0026) (0.401 % 0.006) Am = (0.346+.005) A nf .

By way of comparison, measurement of the same magnet X using Fluxgate Magnetometry (at a distance

of around 16 cm) gave p = (0.345 £.003) A .
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Soludon, Page 5

PART 2 : DISTANCE DEPENDENCE OF FIELD OF "B" UNKOWN

Method I (Close Distances) : Nulling of Transverse Static Deflection
Arrangement (top view) Equation
S
x —
(T 2Ku
X C _ X
nC=3s A oo Byfr) = =3
L. Copper Plate
a?jusz
or
null N
Method TI (Intermediate Distances) : Differential 1/T> Technique

General Relation : T=Ty ; B, =local (horiz.) field { 2rT ) 2 = p!i
X

Arrangement (top view)
S

DEFINE:
sarty=amr? = ar %

slower

COMPASS W
" #
B" FASTER AT %)= xfB" where AB) =2B  (x)
4r Ix
J’ l
||XI!
——# Compass 2
L] I
B, (x)= 21X Aqm?)
X
X
"Master Equation”
* vg+ COMPASS
SLOWER
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Method III (Large Distances) :

Solution, Page 6

Differential 1/T 2T echnique with Partial "Bucking"” of the Earth's Field

Arrangement (top view)

NBII

tape "A" magnet
VERY SECURELY

in position:

llX"

s
"A" -—-—- Compass
n

Oriented to produce
a field contribution

at the compass

opposite in
direction 1o the

Earth's field

I'Bll

COMPASS
FASTER

COMPASS
SLOWER

"Master Equation”

2
B, ()= 2% aqm?)
X

remains the same

Use only partial buckout --(slow natural oscillations typically by a factor of 2)

In working at a given distance x, A(1/T 2 ) must be constant (independent of the "bucking").

AQT 2 ) =const.

AT/T L. const, =————3pn-

AT o T°
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Soludon, Page 7

Sample Experiment
2K [(2x1077)T m/A ][0.34640.005]Am?
Method]  Byx) = —7 = L L S
R (R (m)]
DATA TABLE FOR METHOD I .
measured data calculated s m‘:fm = see below |

"z (m) Rm | Bg») (10'D  ABB  4avx  (ABB),
.062+.001 11240.112 493, 031 065 072
.0705+.0015 .133£.0015 294 019 085 087
.0845+.0015 .167+.002 149 039 071 081
.102+.0015 .206+.005 79 074 .059 .095

The uncertainty in R includes the ruler reading error, together with the imprecision in locating the null
position, the latter effect becoming predorninant at larger x. The R uncertainty, together with the small
uncertainty in By define the AB/B values listed in the 4th column.

Of course there are also the uncertainties in the x values, which we could represent graphically by
horizontal error bars. Since this is technically awkward, we choose instead to define an effective vertical
uncertainty. Since it tumns out that the log-log plot slope is about -4, a given fractional error in x
corresponds to 4 times as much in B(x). These fractional errors have been tabulated in the 5th column.

From this it is clear that we should take the effective AB/B as the square root of the sum of the squares

of thecontributions in colums 4 and 5. These values, listed in column 6, form the basis for the error bars

used. Though we would certainly not expect a student to do this, we would expect him to be aware of

the horizontal uncertainties.

Method 1T 2%y pur? 7 Tesla se? - AT 2
B, )= A(UT *) = (28.2+ .51 )x10" Teslasec - A(I/T 7)
® x =(.120+001)m: %
Data in seconds for 20 oscillations: Focket Calculator Results:
20T, : 14.56,14.50,14.52, 14.58 Taow= (.7274£.0018)sec
20T, @ 11.32,11.34,11.31,11.28 Te = (.5656£.0013)sec

AQUT ¥)=[(3.1257£.0138)-(1.892:£.0095)] sec? = (1.23+.017)sec?
— > B_(x)= (34.7£08)x10 Tesla
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Method ITI Solution, Page 8

Introduced bucking magnet in transverse position to slow oscillations in Earth's Field to about 1.2sec

Master equation is still:

2
/] 2 -

B, (x)= 2K AT ) = @82+ 51)x16” Teslasec’- AUT )
X

® x = (.150+.00)m:
Data in seconds for 20 oscillations: Pocket Calculator Results:

20 Tgow @ 27.90,27.80, 27.78, 27.77 T gow= (1.391+.003)sec

20 Tfl.sl . 19.56 19.66, 19.50, 19.64 Tfasl = (.9795i‘0037)scc

AT %)= [(1.0422+.0079)-(.5171£.0022) Jsé& = (.525+.0082)sec >

— = B_(x)= (148£.35x10  Tesla

®x =(170+£.001)m:

Data in seconds for 20 oscillations: Pocket Calculator Results:
20T,

ow - 2497, 24.97, 24.87 T ow= (1.2468+.0029)sec
20T, : 20.55,20.46, 20.79, 20.65 T o = (1.03062.00708)sec

AT 2 )= [(9415£.013)-(.6433£.0030) Jsec? = (298+.013)sec>
— = B_(x)= (84£0.4)x10” Tesla

®x =(.190+.001)m:

Data in seconds for 20 oscillations: Pocket Calculator Results:
20T, : 17.17, 17.15,17.11, 17.10 Tyow= (.8566+.0017)sec

20T, : 16.01,1593, 1591, 15.92 Tiu = (797+.0029)sec

AQUT %) = [(1.574£.028)-(1.3628+.0053) Jsec? = (2112+.029)sec’
—— B, (x)= (6.0£0.8)x10  Tesla

| @x =(220+.001)m:

Data in seconds for 20 oscillations:
20Ty, : 23.80,23.76,23.70
20Ty, : 22.27,21.98,21.86,21.94

Pocket Calculator Results:
T ow= (1.1877+.00252)sec

T = (1.1006£.0089)sec
AT 2 ) = [(.82552.0134)-(.7089£.0030) Jsec? = (.1166+.014)sec

——» B_(x)= (3.3:0.4)x10" Tesla
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Solution, Page 9

DATA TABLE FOR METHODS II and I

standard

calculated *  propeguion above |

x (m) Method Byx) 107T) ABB 4Avx  (AB/B),
.120+.001 I 34.7 023 033 .040
.150+.001 m 14.8 024 027 .036
.170+£.001 I 8.4 05 024 .055
.190+£.001 I 6.0 13 021 13
.220+.001 it 3.3 12 018 12

The equivalent vertical uncertainties have calculated as before and tabulated in the last column above.
These give the error bars on the log-log plot shown on the next page. The three different methods are
nicely consistent, and the whole data set well fits the power law indicated by the drawn line. When this
is done on the regular log paper (as provided), the easiest way in this case to get the slope is to use a
pocket calculator to find the ratio of the log of the vertical rise ratio to that of the horizontal run ratio for
the possible lines consistent with the errors. Since the line has to drop vertically through three decades in

total, this is roughly 3
slope = =-39%+0.15
lo (0.30+.02) ]

101 (051£.03)

For this particular unknown, the fluxgate magnetometer data gave an effective exponent of -3.92
over the range from 0.07m to 0.22m. A more detailed absolute comparison with those measurements is
shown on the second graph. Here the drawn line corresponds to the actual magnetometer data. The
student experiment is clearly doing an excellent job. Of particular interest is the next to the lowest
point (x=0.19m). For this point, the "buckout" magnet had been moved out a little bit so that the
natural compass period in the Earth's field was about 0.89 sec., which was close to the period of the
"pendulum mode". This was done deliberately to test the effectiveness of the copper wire
"mode-decoupler”. The point at x=0.19 m which is on the line was taken using the decoupler. The
point at the same x value which is almost a factor of 3 higher than the line was taken without the
decoupler.

This shows that the decoupler is both effective and important. Without it, the "fast” and "slow"

measurements are cffected differently by the coupling to the pendulum mode. Then the small

difference between them can be very poorly determined.
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Experimental Problem 2:

Part 1

2.5 points

1.5 points

0 - 1 points (sliding scale)
0 - 1 points (sliding scale)

Part 2

1.0 points

1.0 points

0 - 1 points (sliding scale)
0 - 1 points (sliding scale)

rading Schem

Show how uy is calculated, clearly labeled diagram
Uy is correctly stated

error analysis

consistency with “correct” range

A diagram of a technique that can be used
Correct measurements at 3 distances at least
Accuracy of the result (correct value of p)
Precision and error analysis
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