PROBLEM ;21 : THE LONGITUDINAL MOTION
OF A LINEAR MOLECULE

In this problem you will analyze the longitudinal motion of a
linear molecule, i.e., the motion along the molecular axis. The
rotational motion and the bending of the molecule are not
considered. The molecule is assumed to consist of N atoms of
mass m,, m,, .., m, respectively. Each atom is assumed to be
connected to its neighbors by a chemical bond. Each bond is
approximated by a massless spring which obeys Hooke's law with
fpring constants k;, k,, ... Ky;. The molecule is shown in Fig.

~ Pig.l. A linesr molecule with N atoms. .

Use the following facts when solving this problem: The
longitudinal vibrational motion of a linear molecule consists of
a superposition of separate vibrational motions called normal
vibrations, or normal modes. In a normal mode all atoms vibrate

in simple harmonic motion with the same frequency and pass
through their equilibrium positions simultaneously.

Questions

1) Let x, be the displacement of atom i from its equilibrium
position. Express the force F, acting on each atom i as a
function of the displacements x,, X, ,..., X, and the spring
constants k,, K;, ..., K,,. What relationship is there among the
forces F,, F,, ..., Fy? Using this relationship, derive a
relationship between the displacements x,, X,, ..., Xy and give
a physical interpretation of this relationship.

2) Analyze the motion of a diatomic molecule AB (Fig. 2). The
value of the spring constant is k. Derive an expression for the
forces acting on atoms A and B. Determine the possible types of
motion of the molecule. Determine the corresponding vibrational
frequencies and interpret the result. 1In particular, how is it
possible for the atoms to vibrate with the same frequency even
though their masses are not the same?
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3) Analyze the motion of the triatomic molecule BA, (Fig. 3)

Express the net force on each atom as a function of its
displacement only. Deduce the possible motions of the molecule
and the corresponding vibrational frequencies.

4) The frequencies of the two longitudinal modes of vibration of
the CO, molecule are 3.998 x 10 Hz and 7.042 x 10** Hz,
respectively. Determine a numerical value for the spring
constant of the CO bond.

How well do you think this approximation for the bond structure
of the molecule describes the wvibrational motion of the real
molecule?

The atomic mass of the carbon atom = 12 amu and that of the
oxygen atom = 16 amu. The atomic mass unit = 1.660 x 10°¥ kg.

SOLUTION : PROBLEM [ 2]

The solution is given as several basically equivalent versions. The problem is formulated in
such a way that no knowledge of matrix theory as applied to problems of this kind is
assumed. However, as many of the participants produced elegant and balanced solutions
using matrix theory, a brief sketch of this kind of solution is also presented below.

1) The force on atom i can be deduced from Fig. 1. below.

k|-1 kl
X1 Xi X is1
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SOLUTION : PROBLEM | 2}

A positive displacement x;_; of atom i-1 causes a shortening of the spring k;_{ That causes a
force kj_1x;.) (acting to the right) on atom i. Correspondingly, a displacement x; of atom i
causes a force -kj_ ;x; j - kjx; acting to the left on atom i. Finally, a displacement x; 1 on
atom i causes a force kj , 1X;; ] acting to the right on atom i. The forces on atom i add up to
Fi= ki —xi_) — kil = x;, ) (1)
Taking into account that atom 1 has no left neighbor and atom N no right neighbor, the forces
can be written

F1=— k1(x1 - x2)

Fo=—kixy=x) =kylx, —x5)

Fi= — KX = X)) - kG =X, )

Fn= = Knoq Oy~ Xy_y) Q)

Adding up the forces gives the total force F acting on the molecule:
F=F +Fy+.+FN=0 (3)

According to Newton’s second law, this force equals the mass of the molecule multiplied by
the acceleration of its center of mass:

F=Ma=0 4)

Each separate force equals the mass of the corresponding atom multiplied by the acceleration
of that atom:

Fi=Mjg Q)
(3)and (5) together give

msa; +Moas+....+mpyay =0 )
Relation (6) gives

mivy + myvy +...+ MV = M"O = constant i ¢
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PROBLEM | 2]: THE LONGITUDINAL MOTION
OF A LINEAR MOLECULE

where v denotes the velocity of the center of mass. If' the molecule is observed in a
coordinate system moving with the center of mass, this velocity equals zero. Thus, we find
the following relation between the displacements of the separate atoms:

mjXxj + MyXy +...+ MNXN = MX() = constant 8

This constant can be set equal to zero, meaning that the origin coincides with the center of
mass of the molecule and that the motion of the center of mass is not influenced upon by the
internal forces of the molecule .

2) The molecule and the pertinent quantities are shown in the figure below:

ma k m B
XA XB
The forces on the atoms can be expressed as

Fa =-k(Xa—xg)=mpap

Fg =-k(xg —xa) =mgag (9)
Again,
FA+FB=mA+mB=O (10)

In the center - of - mass system there correspondingly holds

MAXA +mpXp =0 (1
and further
m
Xg = -—FI?XA
(12)
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SOLUTION : PROBLEM [ 2]

Relations (9) can then be written

m Mma +M
Fa = —k(xs +—2 x4 ) = —k(—22"2)x
A (XA Mg Xa) ( ma )Xa

m Ma +mM
Fg = —k{xg +—2 xg) = ~k(—A—L8)xg

Ma (13)

According to the formulation of the problem, the force on each atom is proportional to its
displacement. This can be expressed as

Fg = —rgxg (14)
The proportionality constants r o and ry are obtained by comparing (13) and (14):

mA+mB) mA+mB)

Ma (15)

= k( = k(

The crucial point in the solution is now to utilize the fact given in the formulation of the
problem that the atoms vibrate with equal frequencies:

r ma +m
on = e = e =
A A'llB (16)

The other solution to be deduced from Eqns. (9) and (11) is the trivial one corresponding to

XA= XB (17)

giving w = (), which corresponds to a uniform translation of the molecule without vibrational
motion, or in the center-of-mass system, to a molecule at rest.

Another possible solution is obtained by assuming that x A and xg are proportional to each
other, as can be inferred from the solution to Part 1 of the problem. Thus, we set

Xg =CXA (18)
Inserting (18) into (13) gives

Fa =—k(xa —cxa)=—-k(1-cg)xa =-raxa

1 1
Fg = —k(G X ~Xg)=—k(—~T)xg = ~rgxg
Cs (19)
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PROBLEM | 2]: THE LONGITUDINAL MOTION
OF A LINEAR MOLECULE

The vibrational angular frequencies are

1
— k(< ~1)
N L
A A B B (20)

Solving the resulting second-degree equation for ¢ gives the earlier derived results

¢i=1Cp=——"+-
Mg (21)

The solution ¢y = 1 directly gives Fp= Fg = 0 without any further conditions on x 4 and xg.
The solution ¢y= -m o/mp corresponds to the genuine vibrational motion.
A third way of obtaining the solution is, of course, to use the full equations of motion

Fa =maXa = -k(xa —xg)
Fg =mpXg = —K(xg —Xa) (22)

and assuming harmonic solutions of the form

_ it _ iot
Xp = Xp0€ ; Xg = Xgo€ (23)

(23) inserted in (22) leads to the linear system of equations

(kK -ma®?)Xa0 —KXgo =0
_kXAO + (k —mB(DQ)XBo =0 (24)
Surprisingly many of the participants obtained the solution in this way, correctly utilizing the

fact that the condition for a non-trivial solution is that the determinant of the coefficients of the
unknowns equal zero:

— 2 —
kmACO k2=0
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SOLUTION : PROBLEM [ 2]

The solution to this equation again retrieves the earlier results:

@ = 0; @ = k(ma +mg)
maMmg (26)

with the amplitudes x 4 and xg obtained as before.

3) The molecule to be analyzed in the third part of the problem is illustrated in the following
figure together with the pertinent quantities defined:

m m m
{‘ k B iB
4 X5 X3

The forces on the atoms are

Fi=-k(Xy-X;)
F2 = “k(Xz — X1)—k(x2 — Xs) = ""k(—X1 +2X2 —Xa)
Fa = —k(x3 —x5) (27)

Again we the displacements can be assumed proportional to each other, as the sum of the
mass-weighted displacements is a constant:

X2 = C2Xy; X3 = C3X (28)

where ¢4 and ¢4 are constants to be determined. According to the formulation of the problem,
the participants were supposed to proceed by trying to express the force acting on each atom
as a function of the displacement of that particular atom only. Inserting (28) in (27) then gives

Fi=-k(1-¢5)xy = —ryx

F2 = —k(—i+2—03))(2 = —IsXa
Co

Fs= —k(1—'c—2)x3 = —T3X3
C3 29
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PROBLEM | 2]: THE LONGITUDINAL MOTION
OF A LINEAR MOLECULE

The constants ¢ and ¢ can now be determined from the condition that the atoms vibrate with
equal angular frequencies:

’ M ffz } Ms
0)1= —=(1)2= —=(1)3= ——
My Mg mp (30)

Squaring the roots and using (29) gives the equations

_i+2_c_3 1_0_2

1—02 _ G C2 _ Cq
Ma Mg Ma 31)

These equations must hold simultaneously, so that there hold the relations

1—'02 = 1—0—2

C3 (32)

1, 1
=(2—(1+C )_)____.
8 Co Mg 33)

1-Cp
Ma

The first of these equations has two different solutions:

1) 02=0&03¢0
2) C3=1&02¢0 (34)

The first solution inserted in (33) gives the result

A op-1ECey T

Ma Ca Mg (35)

If ¢9 is directly set = 0 in the right-hand member, the expression diverges. For that not to
occur, the expression 1+c4 must vanish, impying the result

cy=-1 (36)

Thus, we have

X2 = O, X3 =- Xl (37)
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SOLUTION : PROBLEM [ 2]

From (29) and (37) we obtain

k
=k w=,[—

Ma (38)

The angular frequency wj is equal to w1, because the solution actually was obtained on that
condition. An additional complication is that the frequency w, comes out indeterminate, as
atom 2 does not move at all in this particular vibrational mode. The participants were not
supposed to analyze that fact any further; obtaining the result that the central atom does not
move was enough.

The second solution in (34), i.e, c3=1 and cp= 0 gives inserted in (33)

1-¢5 _ (1.__)__.

This gives a second-degree equation for ¢5:

2mA

Cs +( -1)c, A=

"‘B (40)

The roots of this equation are

2mA
Co1=1 Cpp=——F

Ma (41)

The first solution corresponds to equal amplitudes for all atoms, again implying that no bonds
are stretched and no vibrational motion occurs. The second root gives

mB (41)
with the corresponding vibrational angular frequency
= (2 + 1
J \/ Mg Mgy (42)
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PROBLEM | 2|: THE LONGITUDINAL MOTION
OF A LINEAR MOLECULE

As in part 2 of this problem, the solution can also be obtained from the vanishing of the
determinant formed from the equations of motion. They are

Fy=maX; = —k(x;—xz)
F2 = mBiz = —k(—x1 + 2X2 —X3)
Fa =mpX; = —k(X3 - X3) (43)

Again assuming an complex exponential solution

it
X, = Xioelm (44)

a linear system of equations is obtained by factoring out the exponential:
(k —mpw?)x;p —kxpo = 0

—kXz0 + (2k —Mgw? X0 — kXag = 0

kX20 + (k - mA(!)z)X30 =0 45)

The condition for the existence of a non-vanishing solution is again

k ~man? —k 0
~k  2k-mgw? -k |=0
0 -k k —myo?

(46)

The roots for the determinant are obtained as

m m m
\ma B A (47)

thus reproducing the earlier results. The amplitudes are trivially solved by inserting the roots
in the equation system one at a time. This method of solution is, of course, much faster than
the one suggested in the text, but it was not assumed that the participants would have to
master the more advanced techniques. On the other hand, those who did it were rewarded for
a correct solution, even though they took a shorter route demanding less physical reasoning
than that suggested in the formulation of the problem.
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SOLUTION : PROBLEM [ 2]

4) Within the realm of the model adopted, we note that w3 > wo, so that the higher vibrational
frequency, i.e 7.042*1013 Hz, should be set to correspond to w3 and the lower one,

3.998*1013 Hz, should be set to correspond to wo. First the correspondence between the
angular frequency and the frequency is noted:

o=27nv : (48)

Thus, there holds
Wy = 27Vy; 3 =27V3 (49)
The estimates for k come out as

k2 =mA(D22 = 1670 N/m

_MAMB 2~ 1420 N/m
2mA +Mg (50)

k3 = (
The agreement is reasonable. The participants were not expected to produce any further
speculations as to the reasons for the discrepancy. This part of the problem was rather meant
as an illustration of the degree of accuracy inherent in a simple model of the kind presented
here.
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