PROBLEM I_I : AROTATING SATELLITE.

The figure shows a satellite which is circling the Earth in an approximately circular
orbit in the Earth’s equatorial plane. The satellite consists of a massless central
body P and four small peripheral bodies B. The four bodies B each have mass m:
they are fastened to P by means of long thin wires of length r that do not stretch.
All these five bodies. P and the four bodies B. are coplanar with the equatorial
plane. and they can rotate within this plane. The four radial wires are linked to
each other by further thin wires which keep the angles between the radial wires
constant at 90°.

The link wires are included in the system in order to prevent oscillatory movement of
the individual bodies B which would otherwise make the analysis of the movements
extremely complicated. All the bodies B rotate around P at the same angular
velocity, which is w with respect to the fixed stars. Thus. the satellite behaves as a
rigid body. '

Analyze the following questions for the general case. considering all possible
situations. including both senses of rotation of the bodies B. Also obtain numerical
values for certain of the quantities found in questions (1) and (2)—the quantities
required and the necessary numerical data are listed at the end of the problem.

1) The drawing shows the satellite in the position where for the various
wires, r is parallel. anti-parallel or perpendicular to R. (The vector r
runs from body P to a body B and has length r; the vector R runs from
the centre of mass of the Earth to the body P.)

Determine the force exerted by a radial wire on one of the bodies B in
each of these four positions. These positions correspond approximately
to the maximum and minimum forces.
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2) Inside the four bodies B there are four identical machines, powered by
solar energy, connected to the radial wires. Each machine pulls the wire
in, towards B, for a short time whenever there is near maximum force
in the wire (as indicated in the previous question), and lets the same
length of wire out again when the tension is at a minimum. The length
of wire that is pulled in and let out is 1% of the mean length of the
radial wire. The mean length does not change with time.

What is the net power converted by one machine, averaged over one

rotation of the satellite?

Wy —
T

machine performs on the wire when pulling it in, W; i1s the work that

the wire performs on the machine when it is reeled out and T is the

period of rotation.

. W- .
The net power is defined as z , where W, is the work that the

3) Discuss the changes in the motion of the satellite that are caused by
the action of the machines. In particular. analyze any changes that may
occur in each of the situations listed in the table overleaf.

Fill in the table with your results and comments, and don't forget to
hand it in.

Data:

Numerical answers are required in the following situation:
The radius of the orbit of the central body is given by R = Rg + 500 km.

The mean length of the radial wires is r = 100 km.
Thus the diameter of the satellite system is 200 km.

The bodies B have masses m = 1000 kg.

Initially the four bodies B rotate, as referred to the stars. around the central
body P at 10 revolutions/hour.

The masses of the wires are negligible, and the central body P is massless.

Advice:

Consider both senses of rotation for w.
Exact solutions are not expected. Results with 5% accuracy are fully acceptable.
Ignore the gravitational effect of the moon and the sun.

Useful data:

Mass of Earth Mg = 5.97 x 10** kg
Gravitational constant G =6673x10""m kg !s"?
Radius of Earth at equator Rg = 6378km

Denote the product MgG by K. K =3.983 x 10" m’s~?
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Country code:

ANSWER TABLE

Fill in this table as part of your answer. Write down equalities or inequalities
and/or short explanations where necessary.

The quantity
indicated below ... |increases | decreases |stays stays
' if ... if ... unchanged | unchanged
if ... in all
situations.
orbital velocity
of the satellite ;V[.ZS g
radius R
. Yes [J
of the orbit No [
of the satellite
angular velocity w
. Yes
of the satellite No [
gravitational
potential energy Yes L]
No J
of the satellite

Could the satellite reach a higher orbit as a result of the work done by the machines?
Yes [
No [J

Could the satellite reach an arbitrarily high orbit, practically leaving the gravitational
influence of Earth? Why?

....................................................................................................................
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SOLUTION : PROBLEM (1]

Notation. Vectors are denoted as ¥, R. Without vector symbol, r and R mean
the lengths of these vectors.

Unit vectors of specified direction are indicated by indicating the direction vector
in brackets: €(R) is a vector of unit length, directed from the centre of earth

to point P. The vector pointing from B to the centre of earth 1s —&(R + 7) and

@ = —&(R)K/R? = —K R/ R® represents the gravitational acceleration at R.
Different cases are denoted as follows: in the first section, the word parallel means
that R and ¥ are parallel, i.e. that the periferal body B is highest up in its orbit.
In the same way, antiparallel means the position of B nearest to the earth. In later
sections, the different senses of rotation of the satellite are denoted as parallel and
antiparallel: When the angular velocity vectors & and §? (the angular velocity of
P with respect to the centre of the earth) are parallel, it means that the satellite
rotates in the direction of its orbital motion.

Determination of the tensional forces

Determination of the tensional forces requires certain approximations to be done:
1. The centre of the satellite is on a circular Kepler orbit, i.e.

Q'R = K/R*.

The problem formulation indicates that the initial orbit is intended to be circular.
Physically, the orbit could also be elliptical.

2. w and ) are constant.

3. 7 < R so that higher powers of r/R can be neglected.

4. As shown in Figure 1, the extreme end of each radial wire of the satellite is
free to swing back and forth according to the resultant acceleration of the body B.
The force acting on a body B is generally not directed towards the centre P of the
satellite. However, the end section of the wire between P and B is directed along
the direction of the force. It is assumed that these free end sections are so short that
their swinging doesn’t affect significantly the motion of the bodies B of the satellite,
i.e. that & and ¥ are valid for describing the motion of B around P.

5. The side position was defined in the problem as the position where ¥ and R
are perpendicular. The distance between this point and the centre of the earth is

Vr? + R? = Ry/1 + (r?/R?) ~ 1.00011 R ~ R+0.008r. Thus a good approximation
for the side position is the point whose distance to the centre of earth equals R. We
can equally well estimate the force for this approximate side point, the error of
approximation will certainly be less than 5 %.

None of the assumptions 1, 2, 3, and 5 holds if r, the radius of the satellite, is
thousands of kilometers and if the satellite is near the earth. With the numerical
values given in the problem, r/R & 0.0145 so that the approximations are better
than the expected accuracy of solution. Rigorous proof of these approximations
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PROBLEM II : AROTATING SATELLITE.

might be more demanding than solving the problem itself. It was not expected from
the competitors and it will not be given here.

The vectors 7 and R, and the angular velocities & and §2 are defined with respect
to an inertial (non-rotating) frame of reference.

The location vector for one body B is B + 7 Thus we get for the velocity and
acceleration of B

= QxR+ x7, (1)
= —O’R— % (2)

~TR T

With less formalism: the motion of a body B is a superposition (or sum) of two
circular motions, one around the earth and the other around the centre of the
satellite. Thus also the acceleration of B is the sum of the two accelerations: one
directed towards the centre of earth, and of magnitude Q2R, and the other directed
towards the centre of the satellite, and of magnitude w?r.

The gravitational force acting on the body B depends on the distance of B from the
centre of earth, i.e. on the length of the sum of vectors B + 7

K

m—s————. 3
|R + 72 ®)

Fgra;u'ty

and is directed towards the centre of earth, i.e. the direction is opposite to the sum
of vectors R + 7. In vector notation this can be written as

o Keé(R+ 7)

Fgra.m'ty |_i-i I Flz (4)
|R + 7|3

Quite often, the second form is simpler in computations.
The total force acting on B corresponds to the acceleration:

I-;‘ = f‘wire + F‘gravity (6)
= md =m (-0*R - *F) (7)

This gives the tensional force:

Fope/m = —QPR -7+ KR+T)
R+ 7P

(8)
This is an exact result. Numerical answers can be calculated with this expression.
One example is given in the section for numerical results. However, a better un-

derstanding is possible if we find an approximation so that such higher order terms
are neglected which don’t have a significant influence on the results. Indicate the
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SOLUTION : PROBLEM

position of the body B by defining the distance of B from the centre of earth as
|R 4 7| = R+ p where —r < p < r. Express the denominator in powers of p/R:

(R+p)7° = R*(1-3p/R + O(r/R)*) (9)

Physically this approximation means that the change of gravitational acceleration
is assumed to be linearly proportional to p, the change of radius. Substituting
this approximation in the expression of F wire gives the tensional force in arbitrary
rotational position of the satellite as

-

Pope/m = —QF —u? (R+1')(1—3p/R+O(r/R))

R R
= ~O’R-w*F + Q'R (R/R +7/R - 3pR/R* + RO(r/R)?) (11)

—

(10)

N —wi 4+ O — 392,;% (12)

Analyze the contribution of the last term in the positions up (7 and R parallel),

down (7 and R antiparallel) , and sideways (instead of the exact definition, use the
approximate definition which corresponds to the value p = 0):

g

:a

Up, p=+r: ﬁz?%, giving pR=rR = r¥ T+ =TR.
The last term equals —3Q2F.
[P _E oo —’__-‘_-M_—O__R__-O
Down, p=-r: R= T4, giving pR = —rR = —( ¥+)=TR.

Again, the last term equals —30%7.
Sideways, p = 0: The last term is zero.

Substituting for the last term gives the force in the three different cases:

Froin = ~W*=0)Fm ifp=0 (13)
Frow = —~(WP+200)Fm if p=+r (14)
AF = Frew—Frin=30rm (15)

In all three cases the force is parallel or antiparallel to the direction of vector .
The expression (w? + 20?) is always positive. Thus F‘mam is always directed to the
direction of —7, i.e. the wire is pulling the body B at ‘up’ and ‘down’ positions.
However, the expression (w? — Q%) becomes negative if w < Q. This would mean
that F'.;, is directed parallel to #, i.e. that the wire is pushing the body B. This is
impossible, however: it would cause the collapse of the satellite because the structure
consisting of thin wires can only withstand pulling forces. Thus we must require
w > Q in the following analysis. The expression given for AF is based on this
assumption.
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PROBLEM [I]: A ROTATING SATELLITE.

Work done by the machines

The maximum force affecting any selected body B is present when B is in ‘up’
position and when B is in ‘down’ position, i.e. twice during one revolution of the
satellite with respect to the vertical axis. Similarly the minimum force is present
twice during one relative revolution, in the ‘left’ and ‘right’ side positions. The
vertical direction rotates with the angular velocity Q of the orbital motion. If the
satellite rotates in the direction of its orbital motion (& and §2 are parallel) then
the satellite must rotate slightly more than one full revolution in order to make one
revolution with respect to the vertical axis. Then the angular velocity of the satellite
with respect to the vertical axis is w — . In the other case (satellite rotates in the
direction opposite to the direction of orbital motion) the angular velocity of the
satellite with respect to the vertical axis is w + (): less than one absolute revolution
is needed for one relative revolution. In vector notation both cases are given by the
expression & ~ 2.

The machines perform two work cycles (one cycle: pulling the wire + releasing it)
during one relative revolution. Thus the work per one relative revolution is

AE =2 Ar (Fpog — Fpin) =6 m Ar r Q% = 0.06 m r? Q2
The period of one relative revolution is
AT =27 [ (wx Q)
where plus sign corresponds to the antiparallel case. The mean power is given by

P=AE ] AT =2 Ar (Fras— Frnin) | (27/(@£Q)) = Ar (Fraz = Fmin) (0 £ 0)/7

Numerical results

From K/R? = Q®R one gets KR = 25.4 10°°m*s~? and
Q= +/(KR™®) = 0.001106 rad/s. The orbital period is 5678 s.

The angular velocity of the satellite is w = 27/360s = 0.01745 rad/s.

The relative angular velocities are
w — {1 = 0.01634 rad/s (parallel case) and
w4+ = 0.01856 rad/s (antiparallel case).

Fuin = (w®—Q%) rm = 100km 1000kg 303.08 107%s~% = 30339 N (16)
Fraz = (w?+29%) rm = 100km 1000kg 307.68 10~%s~2 = 30706 N (17)
Fraz — Frin = 37 m Q% =367 N. (18)
P = Ar (Fuo — Fain) (wxQ)/x, (19)

Pantivaratt = 1 km 367 N 0.01856 rad/s n=* = 2168 W. (20)

Poorater = 1km 367 N 0.01634 rad/s == = 1909 W. (21)
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SOLUTION : PROBLEM

These values should be reported rounded to two significant figures because approxi-
mations have been used:

\Pantiparallel = 2200 W; (22)
Poaratier = 1900 W. (23)

Example of the exact expression. As an example, we evaluate here the force
for the exact side position directly from the expression

Fuie/m = —Q'R— W7+ LRJ:-Q (24)
R+ 7
. K&R+7
- Ry KERAT) (25)
IR+ 7|?

Taking into account the Kepler equation and the radius value for the side point, we
get

K
1.000112 R?
= —OR-w*7+0.99979 Q*RE(R + 7) (27)

Fuire/m = —QPR— w7+ &R+ 7) (26)
Now the unit vector &(R + ) must be expressed with the vectors R and 7:

s . B4F R 7
eE(R+7)= —=——=0.9998% [—=+ =] .
B0 =1E7 (R R)
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PROBLEM |1 ]: AROTATING SATELLITE.

The same result may be obtained from a triangular construction, see Figure 2. Thus
we get

- - R r
Foyire/m = —02R —w*F +0.99968 QR (E + %) (28)
= —0.00032 QR — (w? — 0.99968 Q)7 (29)

Within the numerical accuracy, this is an exact result. It is easily seen that the
first term can be neglected because it is small and also because it represents a force
which is perpendicular to the radial wire. In fact, it could be used for estimating the
direction of the free-swinging end of the radial wire. The second term is practically
identical with our earlier result for Fp,.

Change of orbit

In principle, the work done by the machines in the satellite could transform the orbit
into a non-circular shape. In this problem, however, it is given that the machines
work four times during each rotational cycle of the satellite. Thus the effect of the
machines is distributed more or less symmetrically all around the orbit. Because
of the circular symmetry, we may safely assume that the orbit stays circular even
while the machines are operating. Thus the change of orbit, as caused by the action
of the machines, is from one circular Kepler orbit to another circular Kepler orbit.
It would be possible to analyze the change of orbit by analyzing the resultant of the
graviational forces which are acting on the four bodies B. This is, however, a difficult
and laborious route. Full analysis of the situation is extremely difficult by that route.
However, that might be the only possible method for analyzing how an intermittent
use of the machines leads to an elliptic Kepler orbit. But in the present case it is
not needed. Conservation laws are the all-important technique for analyzing many
physical situations, and if it is possible to identify a sufficient number of conserved
quantities, the problem can be transformed to solving the conservation equations.
When rotational motion is considered, typical conserved quantities are: energy and
angular momentum. The difficulty is often how to define the system correctly so
that it includes all the energies which together are conserved, or all the angular
momenta. First consider the angular momentum. As is explained elsewhere, the
angular momentum of the rotational motion of the satellite need not be conserved.
However, the total angular momentum I, of the satellite with respect to the centre
of earth is conserved because the only external forces acting on the satellite are
gravitational and directed towards the centre of earth. (This would not be true if
the satellite were in a polar orbit and the non-spherical shape of the earth were
considered). The I, consists of two parts: the internal angular momentum, due to
the rotation of the satellite, and the orbital angular momentum, due to the motion
of the centre-of-mass of the satellite around the earth.

Another conserved quantity is the energy. To be more precise, the total energy Eyo
of the satellite is increased by the net work done by the machines. The following
terms are included in E,.;:

XXIll IPHO JULY 92



SOLUTION : PROBLEM (1]

o The rotational energy of the satellite, 1/2 4m w?r?

o The orbital kinetic energy of the satellite, i.e. the kinetic energy of the motion
of the centre-of-mass, 1/2 4m Q*R?

o The potential energy of the satellite in the gravitational fiel of earth, —4mK/R.
In the first order approximation which we are using, this can be calculated as
if the total mass of the satellite were concentrated in the centre point P.

Thus we have for the total energy the equation

Eoi = 4m(—K/R+1/2 Q*R® +1/2 w*r?) (30)
2m(—Q*R? + w'r?) (because of Kepler). (31)

A third equation for solving the system is obtained from the Kepler law, connecting
the radius of orbit and the orbital velocity of the satellite. Thus we have the system
of three equations

K

= = O*R (Kepler law) (32)
L = 4m(wr?+ QR?) = Constant (33)
Ey—E; = Enp, (34)

where E; and E, are the total energies before and after the machines have done the
net work E,,. The upper sign corresponds to the parallel case: the satellite rotates
in the sense of the orbital motion, and the lower sign to the antiparallel case: the
senses of the rotations are opposite.

These three independent equations are sufficient for solving the three unknowns (2,
R, and w. As such, the equations do not give a clear picture of the change. The
total angular momentum depends on three variables which all can vary when the
orbit changes. Analysis of equations is best started by solving the orbital angular
momentum as a function of R from the Kepler equation:

Loebit = 4mOR? = Am\Q*R* = amVKR.

This shows that the orbital angular momentum increases whenever R increases.
Also, this gives for the total angular momentum the equation

Iiot = 4m(wr? £ /(K R)) = Const .

Because r and K are constants, this equation defines a connection between w and

R.

¢ Parallel case: if the satellite rotates faster, i.e. w increases, then R must
decrease in order that I, be conserved. And if w decreases, R must increase.
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PROBLEM : AROTATING SATELLITE.

e Antiparallel case: if the satellite rotates faster, i.e. w increases, then B must
increase in order that I;,; be conserved. Similarly, if w decreases in the anti-
parallel case, then R also must decrease.

Intuitively one would expect that the increase of the total energy of the satellite
(because of the positive work done by the machines) would lead to increase of w,
then the whole problem would be fully analyzed. However, it is necessary to analyze
the energy equations in order to make certain that this really is true. The orbital
energy as a function of R is

Eopit/dm = —K/R+1/2 *R* = —1/2 K/R,

and the total energy:
Etota]/Qm = —I{/R + w2r2 .

As shown above, in the antiparallel case the conservation of angular momentum
requires that w and R either both increase or both decrease. The first alternative is
valid because then both terms of the total energy expression increase which correctly
corresponds to the increase of total energy.
The parallel case requires a more detailed analysis. We form the differential change
of L.e:

dor® +1/2 K (KR)™?dR = 0.

This is substituted in the expression of total energy,

dEiwtat/2m = d(—K/R + w*r?) (35)
= K/R*dR + 2w dw r? (36)

K/R*dR —2w1/2 K (KR)Y/? dR (37)

= KdR(1/R*~w(KR)™?) (38)

K dR (1/R*> —w/(Q RY)) (39)

K dRR™*(1 —w/Q) (40)

Because w > §), an increase of total energy corresponds to a decrease of R and
further to an increase of w. This confirms that w is increasing in both cases, as
intuitively expected.

Answers to the tabulated questions.

The radius R decreases in the parallel case and increases in the antiparallel case.
The change of the orbital velocity is opposite to the change of R: increase in the
paraliel and decrease in the antiparallel case.

The angular velocity w increases.

The potential energy increases with increasing R, thus increasing in the antiparallel
and decreasing in the parallel case.

As seen from earlier answers, it is possible that the satellite gets in a higher orbit.
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SOLUTION : PROBLEM [1]

It happens in the antiparallel case.

The last question was not quite clear. It was hoped that this question might bring
forward the contrast with ordinary rocket propulsion: it is possible for a rocket to
practically leave the gravitational field of earth by using a finite amount of energy.
However, a rotating satellite would need an infinite amount of energy if R grows
without limit: The equation for I, shows that w must increase without limit,
proportional to the square root of the radius of orbit. Tensional forces in the satellite
would then also increase without limit, proportional to the radius K. Thus there
would be a maximum value for R, corresponding to the strength of the radial wires.
With larger values of R, the wires would break. Rather few participants were able
to analyze this aspect of the problem.

In a few answers, the last question was seen in a different perspective. When the
Kepler equation is taken into account, the work per one revolution can be written
as

AFE =2 dr (F,,L,M—F,,"-n)=6mdr'rﬂzzfiKmdrrR_3

showing that the mean power decreases proportionally to R~2*. Thus the increase
of R gets slower and slower when time goes on. Strictly speaking, this alone would
not prevent R from reaching any predetermined value, given enough time.

Grading
The credit points for this problem were split to two parts of five points each:

e Correct results for the forces ‘up’ and ‘down’ were given one and half points.
Another 1.5 points were given for the correct force in the ‘sideways’ position.
Small numerical errors were forgiven. If there was an essential error in the
equations, then no credit was given for such a result.

e Two points were given if the mean power was correctly obtained as based on
the results of the first part. This merit was given even if the forces were wrong.
This part of the problem was very easy. (In fact, it was difficult enough because
of the need to use the relative angular velocity, but this was only recognized
after the competition.)

e The second half of points were given for the analysis of the changes of or-
bit. One point was given for the answer which correctly related changes in
the orbital velocity and radius R, although it did not help in understanding
the mechanism of orbit change. Half a point was given for each one of the
conservation equations of energy and angular momentum even if there was
no further analysis of the situation. One point was given if the conservation
equations were correctly analyzed for one rotational sense, and another point
if the other rotational sense was also covered. No credit was given for a few
correct stray answers in the table if they did not reflect an understanding of
the situation.
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PROBLEM : AROTATING SATELLITE.

e One point was given for the last question of the table, concerning the ability
of the satellite to leave the gravitational field of earth.

Remarks

1. Coriolis force? There was a difficulty in this problem which luckily was
not affecting the competitors. When the problem was scrutinized, several people
thought that it would be necessary to include the Coriolis term in the solution of
the problem. Of course, it would be possible to use a rotating coordinate system.
Either, one could use a system which rotates with (2, so that one coordinate axis
points ‘down’, towards centre of earth. Or, one could use a system which rotates
with the satellite, with angular velocity w, so that the bodies B of the satellite would
be in fixed positions in this coordinate system. But both cases generate unnecessary
complications without any useful simplifications. There are no relative movements
which would need to be defined with respect to a rotating frame of reference.

The only thing that is relative to another coordinate system is the re-
lative angular velocity of the satellite with respect to the vertical axis
(needed for the computation of the mean power). It is obtained simply
as a sum or difference of the angular velocities w and 2.

Thus it is better to work in one inertial coordinate system. Only a few of the
competitors used or attempted to use Coriolis formalism!

2. The reason for varying forces. The vector presentation which we used for
the solution does not explain the ‘reason’ for the variation of tension: The extra
tension in up and down positions is caused by the variation of the gravitational
force as a function of radius: higher up, the pull of earth is less, thus more tension
is needed for keeping the body in orbit. And deeper down, the gravitational pull
is stronger, needing more tension for supporting the body. The smaller tension in
the side positions is explained by the direction of the gravitational pull: there is an
angle between the pull directions at the centre of the satellite and at the body B.
The whole phenomenon is well known as the tide: the gravitational forces of the
sun and the moon create a change of apparent gravity on earth which is exactly the
same phenomenon as the varying tensional forces of our rotational satellite.

3. Consistency check. The resultant of the calculated four forces acting on
the four bodies B is zero (the opposing forces are of same magnitude but point in
opposite directions). This is correct, it is consistent with the assumption that the
central structures (wires and centre point) of the satellite are massless.

If the analysis were carried out to second order, then the resultant would not be
zero, which would indicate a contradiction. This means that the original assumptions
(centre point of satellite on circular Kepler orbit, constant w and ) would need to
be revised in second order calculations. It would turn out that the centre point
oscillates around the circular orbit with a frequency 2(w £ ) /7.
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SOLUTION : PROBLEM (1]

4. Difficulty of the problem. From the outset it was estimated that this is a
difficult problem. However, the problem turned out to be even more difficult than
we estimated. Only about 10 % of participants were able to analyze the change of
orbit. One detail of the solution fooled both the participants, the team leaders, the
grading team, and the author of the problem: we all calculated the mean power on
the basis of the absolute angular velocity w of the satellite. Only during the writing
of this final report it was recognized that the relative angular velocity w & ) must
be used when calculating the mean power. The natural meaning of ‘mean power’
of a periodic process is the work done during one period divided by the length of
that period. In one period there are the four positions of any single body B, thus
the length of the period must be the time of one relative revolution of the satellite
(relative with respect to the local vertical direction). Question 2 says ambiguously:
‘averaged over one rotation of the satellite’, but the only sensible interpretation of
this is ‘averaged over one rotation with respect to the local vertical’!

5. Usual mistakes in the solutions. In many solutions the decrease of tension
in the side position was not recognized at all, it was assumed that the tension in
side position is w?rm. (The author of the problem first made this error, too. Only
two days before the competition he got this part of the solution right.) If the vector
formalism is used, then this decrease appears automatically. It can also be obtained
by means of a geometrical diagram where the difference of the ‘vertical’ directions
at P and at B is taken into account.

In a surprising number of solutions the tensions in up and down positions were wrong
because of the following mistake: it was asssumed that the body B was performing
one circular motion with angular velocity w and radius r and the second circular
motion with § and R + r (when considering the up position). This results in an
excessive tension for the up position. Often there was also another error which
caused the tension in the down position to be too small. Such a situation is not
consistent, but the competitors did not make a consistency check.

In many solutions it was erroneously assumed that the angular momentum 4mwr?
of the rotation of the satellite about its centre point P would be conserved. If this
were true, then also w would not be changed by the work done by the machines. The
gravitational forces acting on B are not directed towards the centre of the satellite,
they are not central forces with respect to the centre of the satellite. Thus there is
no reason for assuming that the angular momentum or w would remain constant.
It seems that a few competitors remembered the classical example of conservation of
angular momentum: a skater accelerates his/her pirouette by pulling arms close to
the body. It was thought that the work done by the machines goes for increasing the
angular velocity of the satellite. In small scale, this would seem to be true: pulling
one body B closer to P would indeed speed up w. The effect would not be cumulative,
however: later the same B would recede back to the original distance and there would
be a slowing down of w back to the original value. Without the inhomogeneous
gravitational field, there would be no cumulative change of w. Furthermore, the
problem was by purpose formulated so that while two bodies get closer to P, another
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PROBLEM : AROTATING SATELLITE.

two recede from P. Thus the moment of inertia of the satellite does not change and
there is no fluctuation of the value of w.

In a few solutions the numerical values for maximum and minimum forces were
rounded to two significant figures before calculating the difference. But then the
error in the difference of two nearly equal forces may be nearly 100 %!. It is essential
to maintain full accuracy in the intermediate results.

6. Experience with the fill-in table The fill-in table was introduced in the
hope of achieving the following:

¢ Eliminating unnecessary explanations from the answers, thus making it pos-
sible to grade the answers with a minimum of language translations. It was
thought that by asking sufficiently many details one can get a complete picture
of whether the competitor does or doesn’t understand the situation.

e Making the grading process fast, objective, and straightforward, treating all
the participants justly and on equal basis.

These goals were only partly fulfilled:

It was possible to see if a competitor had a good understanding of the situation.
Then all or almost all entries of the table were well answered. However, it was
somewhat problematic how to deal with partly filled tables. Many answers contained
such relations which are trivially true for all circular Kepler orbits. This had not
been expected. It was necessary to formulate a policy about how to deal with true
answers which did not address the intended matters.

The last question was unfortunately formulated so that it could be understood in
two different ways. Also, this question was not supported by other related questions.
Thus it was difficult to decide how to grade half-correct answers to the last question.
Our experience indicates that a fill-in table may be a good device in making the
grading process easier and more objective. However, it requires a good deal of
careful planning and also test filling by a number of persons in order to eliminate
multiple meanings of the questions.
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