THEORETICAL PROBLEMS

Problem 1

The figure 1.1 shows a solid, homogeneous ball raRlilefore falling to the floor its center of mass is
at rest, but the ball is spinning with angular velogiyabout a horizontal axis through its center. The
lowest point of the ball is at a heightibove the floor.

Figure 1.1
When released, the ball falls under gravity, and rebotmdsiew height such that its lowest point is now
ah above the floor. The deformation of the ball and tleerflon impact may be considered negligible.
Ignore the presence of the air. The impact timapalgh, is finite.

The mass of the ball i, the acceleration due the gravitygighe dynamic coefficient of friction between
the ball and the floor igx, and the moment of inertia of the ball about thegiaxis is:

- 2mR
5

You are required to consider two situations, in the, first ball slips during the entire impact time, and in
the second the slipping stops before the end of thadtrtime.

Situationl: slipping throughout the impact.

Find:

a)tan6 , wheref is the rebound angle indicated in the diagram;

b)the horizontal distance traveled in flight between itet &nd second impacts;
¢)the minimum value oy for this situations.

Situationll: slipping for part of the impacts.

Find, again:

a)tano;

b)the horizontal distance traveled in flight between itet &nd second impacts.
Taking both of the above situations into account, skiitetvariation of ta® with wo,

Problem 2

In a square loop with a side length L, a large numbéalié of negligible radius and each with a charge g
are moving at a speedwith a constant separatiabetween them, as seen from a frame of refererate th
is fixed with respect to the loop. The balls are arraragethe loop like the beads on a necklace, L being
much greater thaa, as indicated in the figure 2.1. The no conducting wineifog

the loop has a homogeneous charge density per uniblgnthe in the frame of the loop. Its total charge
is equal and opposite to the total charge of the baltsainframe.



Consider the situation in which the loop moves witloeigy v parallel to its sidé\B (fig. 2.1) through a
homogeneous electric field of stren@lwhich is perpendicular to the loop velocity and makes an déngle
with the plane of the loop.

Figure 2.1

Taking into account relativistic effects, calculate filllowing magnitudes in the frame of reference of an

observer who sees the loop moving with velogity

a)The spacing between the balls on each of the sidedbtip,ass , 8sc, 8cp , Y @pa.

b)The value of the net charge of the loop plus balls oh eathe side of the loofas . Qsc QcpY, Qoa

¢)The modulusM of the electrically produced torque tending to rotatesystem of the loop and the
balls.

d)The energyV due to the interaction of the system, consisting ofdbp and the balls with the electric
field.

All the answers should be given in terms of quantitiesiipe in the problem.

Note The electric charge of an isolated object is independetite frame of reference in which the

measurements takes place. Any electromagnetic radiefiects should be ignored.

Some formulae of special relativity

Consider a reference franSemoving with velocityV with reference to another reference fran@he
axes of the frames are parallel, and their origifiscide at = 0.V is directed along the positive direction
of thex axis.

Relativistic sum of velocities

If a particle is moving with velocity in thex direction , as measured 8i, the velocity of the particle
measured i1Bis given by:
_u'+Vv
= N
1+47
Cc
Relativistic Contraction

If an object at rest in fram® has lengthL, in thex-direction, an observer in frang (moving at velocity
V in thex-direction} will measure its length to be:

2

\

L=L0 1_—2
C



Problem 3 Cooling Atoms by laser

To study the properties of isolated atoms with a higireteof precision they must be kept almost at rest
for a length of time. A method has recently been dpesldo do this. It is called “laser cooling” and is
illustrated by the problem below.

In a vacuum chamber a well collimated beam of’#oms (coming from the evaporation of a sample at
10° K) is illuminated head-on with a high intensity laseame(fig. 3.1). The frequency of laser is chosen
so there will be resonant absorption of a photon by thtm®s whose velocity i& When the light is
absorbed, these atoms are exited to the first energl liich has a mean valleabove the ground
state and uncertainty &f (fig. 3.2).
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For this process, the atom’s decrease in velabitys given bydv, = v; —vo. Light is then emitted by the
atom as it returns to its ground state. The atorriscity changes bylv' = v; —v; and its direction of
motion changes by an angpe(fig. 3.3).
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This sequence of absorption and emission takes place nma@y antil the velocity of the atoms has
decreased by a given amouvtsuch that resonant absorption of light at frequencg longer occurs. It

is then necessary to change the frequency of lases $0 maintain resonant absorption. The atoms
moving at the new velocity are further slowed down wsuihe of them have a velocity close to zero.

As first approximation we may ignore any atomic inteoectprocesses apart from the spontaneous
absorption and emission light described above.

Furthermore, we may assume the laser to be so inthas¢he atoms spend practically no time in the
ground state.

Questions
a)Find the laser frequency needed ensure the resonant admsarpthe light by those atoms whose
kinetic energy of the atoms inside the region behired dbllimator. Also find the reduction in the

velocity of these atomglv,, after the absorption process.

b)Light of the frequency calculated in question a) is absollyedtoms which velocities lie within a
rangedv,. Calculate this velocity range.



¢)When an atom emits light, its direction of motionrhes byg from initial direction. Calculaté.
d)Find the maximum possible velocity decrease for a given frequency.
e)What is the approximate numbidr of absorption-emission events necessary to reduceetheity of
an atom from is initial value,v
-found in question a) above- almost to zero? Assumattime travels in a straight line.
f)Find the time t that the process in question e takedculate the distana&S an atom travels in this
time.
Data
E =3,3610")
r=7,010%J
¢ =310 ms?
m, = 1,6710°" kg
h =6,6210* Js
k =1,3810% JK*
where c is speed of light, h is Planck’s constant, thésBoltzmann constant, and mp is the mass of
proton.

THEORETICAL PROBLEMS SOLUTIONS

Solution Problem 1

a)Calculation of the velocity at the instant before impact

Equating the potential gravitational energy to the kinatiergy at the instant before impact we can arrive
at the pre-impact velocity:

my;

2
from which we may solve fayas follows:

Vo = 4/2gh 2

b)Calculation of the vertical component of the velocity at theamsafter impact
Let v, andv., be the horizontal and vertical components, respegtieélthe velocity of the mass center
an instant after impact. The height attained in #ivéical direction will beh and then:

v;, = 2gah ®)

mgh = 1)

from which, in terms oft (or the restitution coefficient = JE ):

Voy = ﬂzgah = C\vw (4)

c)General equations for the variations of linear and angular momertteeitime interval of the
Impact
Figure 1 2 shows the free body of the ball during impact

M
N==rmo

fr
m
EI;I' g
Considering that the linear impulse of the forces is etpulie variation of the linear momentum and
that the angular impulse of the torques is equal to thatiar of the angular momentum, we have:

ly= .fN(t)dt =my + mwy =m(l+c) 4/2gh (5)

ty

Iy = jfr(t)dt = My (6)

b



o= [RE@MME = R[f ()t = 1@ - w) 7)

Wherel,, I, andl, are the linear and angular impulses of the acting $caioeley is the angular velocity
after impact. The times andt, correspond to the beginning and end of impact.

Variants

At the beginning of the impact the ball will alwaysdbeling because it has a certain angular velaoity
There are, then, two possibilities:

I. The entire impact takes place without the fricti@mnlg able to spin the ball enough for it to stop at the
contact point and go into pure rolling motion.

Il. For a certain timet O (ty, ty), the point that comes into contact with the floasta velocity equal to
zero and from that moment the friction is zero. Lelibok at each case independently.

Case |

In this variant, during the entire moment of impdug ball is sliding and the friction relates to the narm
force as:

f, = Nt (8)
Substituting (8) in relations (6) and (7), and using (5)fimeéthat:

t,
|x=#ij(t)dt =,Uk|y=ﬂk(1+0)\/ﬁ= My )
and: :
Y
lb = R .[N(t)dt = Ru,m1+0c) \/ﬁ = (o — Uo) (10)
which can givetth the horizontal component of thecigle,, and the final angular velocity in the form:
Vo = pc(1+0) y/2gh (11)
W= a - m J2gh (12)

With this we have all the basic magnitudes in termdaté. The range of validity of the solution under
consideration may be obtained from (11) and (12). This solutill be valid whenever at the end of the
impact the contact point has a velocity in the direatibiihe negative. That is, if:

@R > Vo

o - ﬂkmFT(1+C) J2gh > ,Uk(t:c) J2gh

I (13)

so, for angular velocities below this value, gblution is not valid.

@ > HNegn ”Rzgh (1+c) (ﬂ +1j

Case Il
In this case, rolling is attained for a timbetween the initial tim& and the final time; of the impact.
Then the following relationship should exist betweenhtbézontal component of the velociy, and the
final angular velocity:

R = vy (14)
Substituting (14) and (6) in (7), we get that:



MRVzy = |[a)0 —VZXJ (15)
2x = F

which can be solved for the final values:
|, lawyR 2

Vo = = > = — R (16)
mR+  MREHL 7
R
and:
|, 2
W= —=— @ 17
mR? + | 7 )

Calculation of the tangents of the angles

Case |
For tan® we have, from (4) and (11), that:
ang = Vo, _ M (@+cC)y2gh » (1+c)
- - - —Hk
Vyy cy2gh C
+
tan® = wy d+c) (18)
c
i.e., the angle is independentaaf
Case |l
Here (4) and (16) determine for té&nthat:
Vs, lawyR 1 IR
tané = = >
V,y | +mR* ¢/2gh (| +mR)c,/2gh
2w,R
tanfd = ———— (29)
7¢cy/2gh

then (18) and (19) give the solution (fig. 1.3).
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Figute 1.3
We see tha# does not depend an, if wo > @Womin; Where womin is given as:
H (L+c)y/2gh (1+j

R

Womin =



Womin = 7IUk (1-;;) Zgh (20)

Calculation of the distance to the second point of impact

Case |
The rising and falling time of the ball is:

= zﬂ ZCV 2gh / (21)

The distance to be found, then, is;

d| = Wty = = Uy (1+C) 29 20 2h
\ 9

di = 4u(1+c)ch (22)
which is independent ofo,,.

Case Il

In this case, the rising and falling time of the ball & the one given in (21). Thus the distance we are
trying to find may be calculated by multiplyingby the velocityv,, so that:

a4 = v, = _2w,Rc
I = Vaxtv —

R2+| \/ 1+7 \/
d||=ﬂC Z_hRa)O

7\g

Thus, the distance to the second point of impact dbaifiencreases linearly withwy.

Marking Code

The point value of each of the sections is:
la 2 points
1b 1.5 points
l.c 2 points

2.a 2 points
2.b 1.5 points
3 1 point

Solution Problem 2
Question a:

Let’s call Sthe lab (observer) frame of reference associated thétobserver that sees the loop moving
with velocity v; S’ to the loop frame of reference (tkeaxis of this system will be taken in the same

direction as V ; y' in the direction of siddDA and z' axis, perpendicular to the plane of the loop). The
axes of Sare parallel to those 08’ and the origins of both systems coincidé at 0.

1.Side AB
S;B will be a reference frame where the moving ballside AB are at rest. Its axes are parallel
to those ofS and S'. S has a velocityu with respect toS .

According to the Lorentz contraction, the distarcédetween adjacent balls AB, measured S, is



8= —— ®

(This result is valid for the distance between tw@eelpt balls that are in one of any sides, i§
measured in the frame of reference in which they aresgt

Due to the relativistic sum of velocities, aneter in S sees the balls moving &B with velocity:
v+u
= 2
Ty 2)
1+ —
Cc
So, because of Lorentz contraction, this observerseglthe following distance between balls:

2

u
Apg = 1_%& 3)

Substituting (1) and (2) in (3)

(4)
2.Side CD
For the observer in S, the speed of balls in CD is:
v—u
U, = 5
0 =y (5)
1-=
Cc
From the Lorentz contraction:
2
u
Ao =122 6)
Substituting (1) and (5) in (6) we obtain:
V2
1--=
_ C
Qp =4 7)
uv
1-=
Cc
3.Side DA

In system S, at timd_, let a ball be atx, =y, = z, = 0. At the same time the nearest neighbour to

this ball will be in the positionx, = 0,y, =a, z, =0.
The space-time coordinates of this balls, referrexystem S, are given by the Lorentz transformation:

X = —z(x'+vt')

[EY
= | [EEN
Q’T‘

y=y
z=7’ (8)
X'V
= +
t Va [t c? j
1+—2
C

Accordingly, we have for the first ball in S:



1 . 1 .
X =—V2Vt0; yi=0; 2=0; t, = —2'[0 9)
Vv
1_C7 1_C72
%)

And for the second:

vt ;y, =a,z, =0;t, =———t, (10)

_1
2 2 °
J1-Y 1-V
c c

As ;= t,, the distance between two balls in S will be given by

apa=(X-X1)” + (Yo — W)* + (2-22)° (11)
So:

ap=a (12)
4.Side BC

If we repeat the same procedure as above, we can ti&in

dgc=a

X, =

(13)
Question b:
The charge of the wire forming any of the sides, infthme of reference associated with the loop can be
calculated as:

L
Qwire = __q (14)
a

Because L/a is the number of balls in that side. Due tdaittethat the charge in invariant, the same
charge can be measured in each side of the wire ialth@lbserver) frame of reference.

1. Side AB

The charge corresponding to balls in side AB is, indbeflame of reference:

Qugpats =————— 0 (15)

aAB
This is obtained from the multiplication of the numioé balls in that side multiplied by the (invariant)
charge of one ball. The numerator of the first fagtothe right side of equation (15) is the contracted
distance measured by the observer and the denomindiergpdcing between balls in that side.
Replacing in (15) equation (4), we obtain:

1+uv \Lqg
Q 8. bats = [c—zj; (16)
Adding (14) and (16) we obtain for the total charge of thie:si
uv L

Qe =770 7)

" c?a
2. Side CD
Following the same procedure we have that:

2
\
1= uv ) Lq
C

Qeopare =——— =0 =|1-— |— (18)

CD, balls aCD C2 a
And adding (14) and (18) we obtain:

uv L

Q = — (19)

® c?ta
The length of these sides measured by the obser&eisih and the distance between balls is a, so:

_ _Lq

QBC,baIIs - QDA,baIIs - ? (20)

Adding (14) and (20) we obtain:



Qec=0 (21.2)

pa=0 (21.2)
Question c:
There is electric force acting into the side AB equal to
-~ _(uv)L -
FAB =QpE [ 2j—qE (22)
c”Ja
and the electric force acting into the side CD is:
- uv L -
FCD =QepE= [ 2j—qE (23)
c”Ja
Fepand F, form a force pair. So, from the expressiorthfertorque for a force pair we have that (fig. 2.2):
M =|Fag|Lsin@ (24)
And finally:
M ———|q|‘ sin® (25)
E
. &
i yi
E-:D s
A
™
.
Fig 2.2
Question d:
Let’s call Vag ang VCD the electrostatic in the points of sides AB and Cipeetively. Then:
W=V 8Qns + VeoQep (26)

Let’s fix cero potential (V=0) in a plane perpendiculafioand in an arbitrary distance R from side AB
(fig. 2.3).

Figure 2.3

Then:

W=-ERQys — E(R+Lc08)Qcp 27)
But QCD:'QABn SO:

W=-ELQuscod (28)



Substituting (17) in (28) we obtain:
uvL’qE

c’a

Marking Code
Grading for questions will be as follows:
a)4,5 points.
b)2,0 points.
¢)1,5 points.
d)2,0 points.
These points are distributed in questions in the followiag: w
Question a:
1. Obtaining expressions (4) and (7) correctly: 3,0 points.
Only one of them correct: 2,0 points.
2. Obtaining expressions (12) and (13) correctly includivey iecessary calculations to arrive to this
results: 1,5 points.
Only one of them correct: 1,0 points.
If the necessary calculations are not present: 0j& ffmi both (12) and (13) correct; 0,5 points for only
one of them correct.
Question b:
1.0btaining expressions (17) and (19) correctly: 1,0 point.
Only one of them correct: 1,0 point.
2. Obtaining expressions (21.1) and (21.2) correctly: 0,5 .point
Only one them correct: 0,5 point.
Question d:
1.0Obtaining expression (29) correctly: 2,0 points.
When the modulus of a vector is not present where reegeske student will loose 0,2 points. When the
modulus of q is not present where necessary the studéfdose 0,1 points.

W = cos0 (29)

Solution Problem 3

Question a:

The velocity y of the atoms whose kinetic energy is the mean cthis on issuing from the collimator
is given is given by:

Emv(f:§kT:>v0 a/ﬁ @)
2 2 m

v = 31,3810 10°
° 231670077

Vo= 1,0410° m/s because:

m= 23 (2)

Since this velocity is much smaller than gs@c, we may disregard relativistic effects.
Light is made up of photons with energy &nd momentumwvic.

In the reference system of the laboratory, the ghangl momentum conservation laws
applied to the absorption process imply that:

m/s

1 1 hv -hv
—mvZ+hv=-mvZ+Emv, ——=mv, > Av, =v, -V, =——
2 2 c mc

%m(vf -vZ)=hv-E :>%m(vl +v, )(v,-Vv,)=hv-E

hv/c<<mw,. Then vy = v, and this implies myAv; = hv = E, where we assume that
V1 + Vo= 2V
Combining these expressions:



V= 3)
1+ Vo
Cc
and:
pv, =-£ 1 (4)
me 14+ Yo

c
And substituting the numerical values:
v=5010“Hz Av;=-3,010% m/s
If we had analyzed the problem in the reference systammoves with regard to the
laboratory at a velocity,ywe would have that:

%m(vl -v,)’+E=hv

Wherev =

> is the frequency of the photons in the laboratory
1+
c
system. Disregardingv’ we get the same two equations above.
The approximations are justifiable because:

v 010
\

[o]

Then v + vo = 2\, - Avy = 2V,

Question b:
For a fixedv:
E
V, =Cl —-— 5
=y ©
if E has an uncertaintly, v, would have an uncertainty:
r CF(1+ V"j r
av, =S =L )% —go5mis (6)
hv E E

so the photons are absorbed by the atoms which vetodtie in the interval

Av, Av,
VO - ’VO +
2 2

Question c:
The energy and momentum conservation laws imply that:

%mvf +E :%mv'f +hv'

(v’ —is the frequency of emitted photon)

, hv
mv, =mv', cos¢$ + —cosB
c

0=mv';sin —h—vsin S
c

The deviationp of the atom will be greatest whﬁpg, then:



, hv' o hv'
mv, =mv',cos¢,;— =mv';sinp , = tan¢ =
c

T mv,e
sincev’ = v:
E
tang, = (7)
mv,c
b, = arctgi = ¢, =500 rad (8)
mvc
Question d:

As the velocity of the atoms decreases, the frequaregled for resonant absorption
increases according to:

E

h
1+ Ve
c
When the velocity is = Av, absorption will still be possible in the lower paftthe
level if:

V=

el
hv = —2A = E :Av=£[1+v—°j (9)
1+V0 \% 1+v70 2E c
c c
Av = 3,12 m/s
Question e:

If each absorption-emission event varies the velastiv, = — , decreasing velocity
mc
from v, to almost zero would require N events, where:

Vo .MV . N=356010°

[o]

|Avl| -

Question f:
If absorption is instantaneous, the elapsed time israhgied by the spontaneous

emission. The atom remains in the excited state fertaio time, T =F, then:

At =Np = N0 - mehv,
r rE

The distance covered in that timeAS=wAt/2. Assuming that the motion is uniformly
slowed down:

AS =%mchv§FE = AS=175m

= At=3370107° s

Marking Code

a)Finding ¥ 1 pt Total 3 pt
“ Y 1 pt
“ Avy 1 pt

b) * Av, 1,5 pt Total 1,5 pt



c) -~ dm 1,5 pt Total 1,5 pt

d - Av 1 pt Total 1 pt

e - N 1 pt Total 1 pt

) At 1 pt Total 2 pt
“ AS 1 pt

Overall total 10 pts
We suggest in all cases: 0,75 for the formula; 0,25 fontimeral operations.

EXPERIMENTAL PROBLEM

Problem

Inside a black box provided with three terminals labeled An& C, there are three electric components

of different nature. The components could be any of theviallg types: batteries, resistors larger then

100 ohm, capacitors larger than 1 microfarad and semicardiiotes.

a)Determine what types of components are inside ttol blax and its relative position to terminal A, B
and C. Draw the exploring circuits used in the determinafiecluding those used to discard circuits
with similar behaviour

b)If a battery was present, determine its electroradtivce. Draw the experimental circuit used.

c)If a resistor was present, determine its valuewDree experimental circuit used.

d)If a capacitor was present, determine its value. Dhawexperimental circuit used.

e)lf a diode was present, determiigandV,, whereV, the forward bias threshold voltage avids the
reverse bias breakdown voltage.

f)Estimate, for each measured value, the error limits.

The following equipments and devices are available for year
1 back box with three terminals labeled A, B and C;
1 variable DC power supply;
2 Polytest 1 W multimeters;
10 connection cables;
2 patching boards;
1100 K2, 5 % value resistor;
11010, 5 % value resistor;
111Q, 5 % value resistor;
1 100uF, 20 % value capacitor;
1 chronometer;
2 paper sheets;
1 square ruler;
1 interruptor.
Voltmeter internal resistance.

Scale Value in®
0-1V 3,2 1%
0-3V 10 1%
0-10V 32 1%
0-20 V 64 1%
0-60 V 200 1%
Ammeter internal resistance.

Scale Value i
0-0,3 mA 1000 1%
0-1 mA 263 1%
0-3 mA 94 1%
0-20 mA 304 1%
0-30 mA 9,84 1%
0-100 mA 3,09 1%
0-300 mA 0,99 1%

0-1 mA 0,31 1%



Notice: Do not use the Polystes 1 W as an ohmmetetedryour circuit against large currents, and do
not use currents larger than 20 mA.

Give your results by means of tables or plots.

When drawing the circuits, use the following symbols:
L*

Wariable power supply

Battery

L

Eeststor

Capacttor

semiconductor diode

Ammeter

WVoltmeter

PPLT]

EXPERIMENTAL PROBLEM. SOLUTION

Solution Problem

Since a battery could be present, the first test sheuidtended to detect it. To do that, the voltage drops
Vam Vac and . should be measured using a voltmeter. This test valivghat no batteries are present.

Next, a testing circuit as shown in figure 4.1 shouldded.
1k

R
<

Figure 4.1

By means of this circuit, the electric conduction betwagpair of terminals should be tested, marking all
permutations and reversing the polarity. ResistpiisRincluded to prevent a large current across the
diode. One conclusion is that between A and C thered®de and a resistor in series, although its
current position is still unknown. The other concluasie that a capacitor is tighted to terminal B. To

determine the actual circuit topology, further transexgeriments have to be conducted.

In this way, it is concluded that the actual circuitdiesihe black box is that shown in figure 4.2.



=7
)

L L1
A

afl

Figure 4.2
The best procedure for the resistor value determinatido ot a set of voltage and current values
measured between A and C. Figure 4.3 shows the resultingEpdoapolating both linear regions, the
values of \{ and \; are obtained and the resistor value equals the realpbthe slope.

Similar, the best method to measure the capacitaevalto build a testing circuit as shown in figure 4.4.
The current is adjusted to full scale and then, the bustopened.

The time needed by the current to drop to its half valmeeasured. Applying the formulae t = RCIn(2),
the value of C is obtained.

I
iy | ] 1}
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_ A 1
E=—Ff1"
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Figure 4.4

Marking Code
1. Determination of circuit topology: 8 points.
1.1 For discarding the presence of a battery: 1.poin
1.2 For drawing the exploring circuit which determime ¢ircuit topology in a unique way: 7 points.
2. Resistor and diode parameters value measuremernints. po
2.1 For drawing the measuring circuit: 2 points.
2.2 Error limits calculation: 3 points.
2.3 Result: 3 points.
2.3.1 Coarse method: 2 points.
2.3.2 Graphic method: 3 points.
3. Capacitor value measurement: 4 points.
3.1 For drawing the measuring circuit: 2 points.
3.2 Error limits calculations: 2 points.



