
T H E O R E T I C A L      P R O B L E M S 
 
Problem 1 
The figure 1.1 shows a solid, homogeneous ball radius R. Before falling to the floor its center of mass is 
at  rest, but the ball is spinning with angular velocity ω0 about a horizontal axis through its center. The 
lowest point of the ball is at a height h above the floor. 
 

 
When released, the ball falls under gravity, and rebounds to a new height such that its lowest point is now 
ah above the floor. The deformation of the ball and the floor on impact may be considered negligible. 
Ignore the presence of the air. The impact time, although, is finite. 
 
The mass of the ball is m, the acceleration due the gravity is g, the dynamic coefficient of friction between 
the ball and the floor is µk, and the moment of inertia of the ball about the given axis is: 

I = 
5

2 2mR
 

You are required to consider two situations, in the first, the ball slips during the entire impact time, and in 
the second the slipping stops before the end of the impact time. 
 
Situation I: slipping throughout the impact. 
Find: 
a) tan θ , where θ is the rebound  angle indicated in the diagram; 
b) the horizontal distance traveled in flight between the first and second impacts; 
c) the minimum value of ω0 for this situations. 
 
Situation II: slipping for part of the impacts. 
Find, again: 
a) tan θ; 
b) the horizontal distance traveled in flight between the first and second impacts. 
Taking both of the above situations into account, sketch the variation of tan θ with ω0. 

 

Problem 2 
In a square loop with a side length L, a large number of balls of negligible radius and each with a charge q 
are moving at a speed u with a constant separation a between them, as seen from a frame of reference that 
is fixed with respect to the loop. The balls are arranged on the loop like the beads on a necklace, L being 
much greater than a, as indicated in the figure 2.1. The no conducting wire forming  
the loop has a homogeneous charge density per unit length in the in the frame of the loop. Its total charge 
is equal and opposite to the total charge of the balls in that frame. 



Consider the situation in which the loop moves with velocity v parallel to its side AB (fig. 2.1) through a 
homogeneous electric field of strength E which is perpendicular to the loop velocity and makes an angle θ 
with the plane of the loop. 
 

 
Taking into account relativistic effects, calculate the following magnitudes in the frame of reference of an 
observer who sees the loop moving with velocity v: 
a) The spacing between the balls on each of the side of the loop, aAB , aBC , aCD , y aDA. 
b) The value of the net charge of the loop plus balls on each of the side of the loop: QAB ,  QBC , QCD y, QDA  
c) The modulus M of the electrically produced torque tending to rotate the system of the loop and the 

balls. 
d) The energy W due to the interaction of the system, consisting of the loop and the balls with the electric 

field. 
 All the answers should be given in terms of quantities specified in the problem. 
Note. The electric charge of an isolated object is independent of the frame of reference in which the 
measurements takes place. Any electromagnetic radiation effects should be ignored. 
 
Some formulae of special relativity 
 
Consider a reference frame S’ moving with velocity V with reference to another reference frame S. The 
axes of the frames are parallel, and their origins coincide a t  = 0. V is directed along the positive direction 
of the x axis. 
 
Relativistic sum of velocities 
 
If a particle is moving with velocity u’ in the x’ direction , as measured in S’, the velocity of the particle 
measured in S is given by: 
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Relativistic Contraction 
 
If an object at rest in frame S  has length  L0 in the x-direction, an observer in frame S’ (moving at velocity 
V in the x-direction} will measure its length to be: 
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Problem   3 Cooling Atoms by laser 
To study the properties of isolated atoms with a high degree of precision they must be kept almost at rest 
for a length of time. A method has recently been developed to do this. It is called “laser cooling” and is 
illustrated by the problem below. 
 
In a vacuum chamber a well collimated beam of Na23 atoms (coming from the evaporation of a sample at 
103 K) is illuminated head-on with a high intensity laser beam (fig. 3.1). The frequency of laser is chosen 
so there will be resonant absorption of a photon by those atoms whose velocity is v0. When the light is 
absorbed, these atoms are exited to the first energy level, which has a mean value E above the ground 
state and uncertainty of Γ  (fig. 3.2). 
 
 

 
For this process, the atom’s decrease in velocity ∆v1 is given by ∆v1 = v1 – v0. Light is then emitted by the 
atom as it returns to its ground state. The atom’s velocity changes by ∆v’   =  v’

1 – v1 and its direction of 
motion changes by an angle ϕ  (fig. 3.3). 
 

 
 
This sequence of absorption and emission takes place many times until the velocity of the atoms has 
decreased by a given amount ∆v such that resonant absorption of light at frequency v no longer occurs. It 
is then necessary to change the frequency of laser so as to maintain resonant absorption. The atoms 
moving at the new velocity are further slowed down until some of them have a velocity close to zero. 
 
As first approximation we may ignore any atomic interaction processes apart from the spontaneous 
absorption and emission light described above. 
Furthermore, we may assume the laser to be so intense that the atoms spend practically no time in the 
ground state.  
  
 
Questions 
 
a) Find the laser frequency needed ensure the resonant absorption of the light by those atoms whose 

kinetic energy of the atoms inside the region behind the collimator. Also find the reduction in the 
velocity of these atoms, ∆v1, after the absorption process. 

 
b) Light of the frequency calculated in question a) is absorbed by atoms which velocities lie within a   

range ∆v0. Calculate this velocity range. 



c) When an atom emits light, its direction of motion changes by ϕ  from initial direction. Calculate ϕ. 
d) Find the maximum possible velocity decrease  ∆v  for a given frequency. 
e) What is the approximate number N  of absorption-emission events necessary to reduce the velocity of 

an atom from is initial value vo 
 -found in question a) above- almost to zero? Assume the atom travels in a straight line. 
f)Find the time t that the process in question e takes. Calculate the distance ∆S an atom travels in this 

time. 
 Data 
  E = 3,36⋅10-19 J 
  Γ = 7,0⋅10-27 J 
  c = 3⋅108 ms-1 
  mp = 1,67⋅10-27 kg 
  h = 6,62⋅10-34 Js 
  k = 1,38⋅10-23 JK-1 
where c is speed of light, h is Planck’s constant, k is the Boltzmann constant, and mp is the mass of 
proton. 
 

T H E O R E T I C A L    P R O B L E M S.    S O L U T I O N S 
 
Solution Problem 1 
a) Calculation of the velocity at the instant before impact 
Equating the potential gravitational energy to the kinetic energy at the instant before impact we can arrive 
at the pre-impact velocity v0: 

             mgh =  
2

2
0mv

          (1)  

              from which we may solve for v0 as follows: 
 

             V0  =  gh2           (2)  

b) Calculation of the vertical component of the velocity at the instant after impact  
Let v2x and v2y be the horizontal and vertical components, respectively, of the velocity of the mass center 
an instant after impact. The height attained in the vertical direction will be αh and then:  

2
2yv  =  hg2 α            (3)   

from which, in terms of α (or the restitution coefficient  c  = α ):  

v2y  =  hg2 α  =  cv0          (4)   

c) General equations for the variations of linear and angular momenta in the time interval of the  
Impact     

 
    Considering that the linear impulse of the forces is equal to the variation of the linear momentum and 
that the angular impulse of the torques is equal to the variation of the angular momentum, we have: 
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Where Ix, Iy and Iθ are the linear and angular impulses of the acting forces and ω2  is the angular velocity 
after impact. The times t1 and t2 correspond to the beginning and end of impact.   
 
Variants   
At the beginning of the impact the ball will always be sliding because it has a certain angular velocity ω0. 
There are, then, two possibilities: 
 
I. The entire impact takes place without the friction being able to spin the ball enough for it to stop at the 

contact point and go into pure rolling motion.    
 
II. For a certain time  t  ∈  (t1, t2), the point that comes into contact with the floor has a velocity equal to 

zero and from  that moment the friction is zero. Let us look at each case independently. 
 
Case  I 
In this variant, during the entire moment of impact, the ball is sliding and the friction relates to the normal 
force as: 
fr  =  µ kN(t)           (8)  
Substituting (8) in relations (6) and (7), and using (5), we find that: 
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 which can give us the horizontal component of the velocity v2x and the final angular velocity in the form: 

       V2x  =  µ k (1 + c) gh2          (11)   

      ω2  =  ω0  −  
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With this we have all the basic magnitudes in terms of data. The range of validity of the solution under 
consideration may be obtained from (11) and (12). This solution will be valid whenever at the end of the 
impact the contact point has a velocity in the direction of the negative x. That is, if: 
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          so, for angular velocities below this value, the solution is not valid. 
 
Case  II 
In this case, rolling is attained for a time t between the initial time t1 and the final time t2 of the impact. 
Then the following relationship should exist between the horizontal component of the velocity v2x and the 
final angular velocity: 
   ω2R  =  v2x           (14) 
Substituting  (14) and  (6) in  (7), we get that: 
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 which can be solved for the final values: 

    V2x  =  

R

I
mR

I

+

0ω
  =  

ImR

RI

+2
0ω

  =  
7

2
ω0R       (16) 

 and: 

    ω2  =  
ImR

I

+2
0ω

  =  
7

2
 ω0         (17) 

Calculation of the tangents of the angles  
 
Case  I  
For  tan θ we have, from (4) and (11), that:  
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 i.e., the angle is independent of ω0. 
 
Case  II 
Here (4) and (16) determine for  tan θ  that: 
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then  (18) and (19) give the solution (fig. 1.3). 
 

 
 
We see that θ  does not depend on ω o if  ω 0  >  ω 0 min; where  ω 0 min is given as: 
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Calculation of the distance to the second point of impact  
 
Case  I 
The rising and falling time of the ball is: 
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The distance to be found, then, is; 
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which is independent of  ω 0. 
 
Case  II 
In this case, the rising and falling time of the ball will be the one given in (21). Thus the distance we are 
trying  to find may be calculated by multiplying tv by the velocity  v2x so that: 
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Thus, the distance to the second point of impact of the ball increases linearly with  ω 0. 
 
Marking Code 
The point value of each of the sections is: 
                1.a        2 points 
                1.b        1.5 points 
                1.c        2 points 
 
                2.a        2 points 
                2.b        1.5 points 
                3           1 point    
 
Solution Problem  2  
Question   a: 
Let’s call S the lab (observer) frame of reference associated with the observer that sees the loop moving 
with velocity v; S’ to the loop frame of reference (the x’ axis of this system will be taken in the same 
direction as  v

r
; y’ in the direction of side DA and  z’ axis, perpendicular to the plane of the loop). The 

axes of  S are parallel to those of  S’ and the origins of both systems coincide at t  =  0. 
 
1. Side  AB  
 
  ''

ABS   will be a reference frame where the moving balls of side AB are at rest. Its axes are parallel        

   to those of  S  and  'S . ''S has a velocity  u  with respect to  'S . 

  According to the Lorentz contraction, the distance  a, between adjacent balls of AB, measured in ''S , is: 
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(This result is valid for the distance between two adjacent balls that are in one of any sides, if a, is  
measured in the frame of reference in which they are at rest).  
 
    Due to the relativistic sum of velocities, an observer in  S  sees the balls moving in AB with velocity: 
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So, because of Lorentz  contraction, this observer will see the following distance between balls: 
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Substituting (1) and (2) in (3) 
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2. Side CD 
For the observer in S, the speed of balls in CD is: 
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From the Lorentz contraction: 
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Substituting (1) and (5) in (6) we obtain: 
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3. Side DA 

In system S’, at time 'ot , let a ball be at 0'
1
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'
1 === zyx . At the same time the nearest neighbour to 

this ball will be in the position ayx == '
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The space-time coordinates of this balls, referred to system S, are given by the Lorentz transformation: 
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Accordingly, we have for the first ball in S: 
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And for the second: 
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As t1= t2, the distance between two balls in S will be given by: 
aDA=(x2-x1)

2 + (y2 – y1)
2 + (z2-z1)

2        (11) 
So: 
aAD=a           (12) 
4. Side BC 
If we repeat the same procedure as above, we can obtain that: 
aBC=a 
           (13) 
Question b: 
The charge of the wire forming any of the sides, in the frame of reference associated with the loop can be 
calculated as: 

q
a
L
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Because L/a is the number of balls in that side. Due to the fact that the charge in invariant, the same 
charge can be measured in each side of the wire in the lab (observer) frame of reference. 
1. Side AB 
The charge corresponding to balls in side AB is, in the lab frame of reference: 
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This is obtained from the multiplication of the number of balls in that side multiplied by the (invariant) 
charge of one ball. The numerator of the first factor in the right side of equation (15) is the contracted 
distance measured by the observer and the denominator is the spacing between balls in that side. 
Replacing in (15) equation (4), we obtain: 
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Adding (14) and (16) we obtain for the total charge of this side: 
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2. Side CD 
Following the same procedure we have that: 
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And adding (14) and (18) we obtain: 
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The length of these sides measured by the observer in S is L and the distance between balls is a, so: 

a
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Adding (14) and (20) we obtain: 



QBC = 0           (21.1) 
QDA=0           (21.2) 
Question c: 
There is electric force acting into the side AB equal to: 
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and the electric force acting into the side CD is: 
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FCD and F, form a force pair. So, from the expression for the torque for a force pair we have that (fig. 2.2): 
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          Fig 2.2 

Question d: 
Let’s call VAB and VCD the electrostatic in the points of sides AB and CD respectively. Then: 
W=VABQAB + VCDQCD         (26) 

Let’s fix cero potential (V=0) in a plane perpendicular to 
→
E  and in an arbitrary distance R from side AB 

(fig. 2.3). 

 
Figure 2.3 

Then: 
W=-ERQAB – E(R+Lcosθ)QCD        (27) 
But QCD=-QAB, so: 
W=-ELQABcosθ          (28) 



Substituting (17) in (28) we obtain: 
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Marking Code 
Grading for questions will be as follows: 
a)4,5 points. 
b)2,0 points. 
c)1,5 points. 
d)2,0 points. 
These points are distributed in questions in the following way: 
Question a: 
1. Obtaining expressions (4) and (7) correctly: 3,0 points. 
    Only one of them correct: 2,0 points. 
2. Obtaining expressions (12) and (13) correctly including the necessary calculations to arrive to this 

results: 1,5 points. 
    Only one of them correct: 1,0 points. 
If the necessary calculations are not present: 0,8 point for both (12) and (13) correct; 0,5 points for only 
one of them correct. 
Question b: 
1. Obtaining expressions (17) and (19) correctly: 1,0 point. 
    Only one of them correct: 1,0 point. 
2. Obtaining expressions (21.1) and (21.2) correctly: 0,5 point. 
    Only one them correct: 0,5 point. 
Question d: 
1. Obtaining expression (29) correctly: 2,0 points. 
When the modulus of a vector is not present where necessary, the student will loose 0,2 points. When the 
modulus of q is not present where necessary the student will loose 0,1 points. 
 
Solution Problem  3 
Question a: 
The velocity vo of the atoms whose kinetic energy is the mean of the atoms on issuing from the collimator 
is given is given by: 
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vo ≈ 1,04⋅103 m/s because: 
m ≈ 23 mp          (2) 
Since this velocity is much smaller than c, vo<< c, we may disregard relativistic effects. 
Light is made up of photons with energy hν and momentum hν/c. 
In the reference system of the laboratory, the energy and momentum conservation laws 
applied to the absorption process imply that: 
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hν/c<<mvo. Then v1 ≈ vo and this implies mvo∆v1 = hν = E, where we assume that  
v1 + vo ≈ 2vo 
Combining these expressions: 
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And  substituting the numerical values: 
ν ≈ 5,0⋅1014 Hz      ∆v1 ≈ -3,0⋅10-2 m/s 
If we had analyzed the problem in the reference system that moves with regard to the 
laboratory at a velocity vo, we would have that: 
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ν=ν  is the frequency of the photons in the laboratory 

system. Disregarding 2
1v∆  we get the same two equations above. 

The approximations are justifiable because: 
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Then v1 + vo = 2vo - ∆v1 ≈ 2vo 
 
Question b: 
For a fixed ν: 
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if E has an uncertainty Γ, vo would have an uncertainty: 
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so the photons are absorbed by the atoms which velocities are in the interval 
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Question c: 
The energy and momentum conservation laws imply that: 
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(ν’ – is the frequency of emitted photon) 
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The deviation ϕ of the atom will be greatest when 
2
π=θ , then: 
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Question d: 
As the velocity of the atoms decreases, the frequency needed for resonant absorption 
increases according to: 
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When the velocity is vo = ∆v, absorption will still be possible in the lower part of the 
level if: 
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∆v = 3,12 m/s 
 
Question e: 

If each absorption-emission event varies the velocity as 
mc
E

v1 ≈∆ , decreasing velocity 

from vo to almost zero would require N events, where: 
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Question f: 
If  absorption is instantaneous, the elapsed time is determined by the spontaneous 

emission. The atom remains in the excited state for a certain time, 
Γ

=τ h
, then: 
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The distance covered in that time is ∆S=vo∆t/2. Assuming that the motion is uniformly 
slowed down: 
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Marking Code 
a)Finding   vo  1 pt  Total 3 pt 
        “    ν  1 pt 
        “    ∆v1  1 pt 
b)     “    ∆vo  1,5 pt  Total 1,5 pt 



c)     “    ϕm  1,5 pt  Total 1,5 pt 
d)     “    ∆v  1 pt  Total 1 pt 
e)     “    N  1 pt  Total 1 pt 
f)     “    ∆t  1 pt  Total 2 pt 
        “    ∆S  1 pt         ____________ 

     Overall total 10 pts 
We suggest in all cases: 0,75 for the formula; 0,25 for the numeral operations.  
 

E X P E R I M E N T A L      PR O B L E M 
 
Problem 
Inside a black box provided with three terminals labeled A, B and C, there are three electric components 
of different nature. The components could be any of the following types: batteries, resistors larger then 
100 ohm, capacitors larger than 1 microfarad and semiconductor diodes. 
a)Determine what types of components are inside the black box and  its relative position to terminal A, B 

and C. Draw the exploring circuits used in the determination, including those used to discard circuits 
with similar behaviour 

b)If a battery was present, determine its electromotive force. Draw the experimental circuit used. 
c)If a resistor was present, determine its value. Draw the experimental circuit used. 
d)If a capacitor was present, determine its value. Draw the experimental circuit used. 
e)If a diode was present, determine Vo and Vr, where Vo the forward bias threshold voltage and Vr is the 

reverse bias breakdown voltage. 
f)Estimate, for each measured value, the error limits. 
 
The following equipments and devices are available for your use: 

1 back box with three terminals labeled A, B and C; 
1 variable DC power supply; 
2 Polytest 1 W multimeters; 
10 connection cables; 
2 patching boards; 
1 100 kΩ, 5 % value resistor; 
1 10 kΩ, 5 % value resistor; 
1 1 kΩ, 5 % value resistor; 
1 100 µF, 20 % value capacitor; 
1 chronometer; 
2 paper sheets; 
1 square ruler; 
1 interruptor. 

Voltmeter internal resistance. 
Scale   Value in kΩ 
0-1 V   3,2 1 % 
0-3 V   10 1 % 
0-10 V   32 1 % 
0-20 V   64 1 % 
0-60 V   200 1 % 
 
Ammeter internal resistance. 
Scale   Value in Ω 
0-0,3 mA  1 000 1 % 
0-1 mA      263 1 % 
0-3 mA        94 1 % 
0-20 mA       30,4 1 % 
0-30 mA       9,84 1 % 
0-100 mA       3,09 1 % 
0-300 mA       0,99 1 % 
0-1 mA        0,31 1 % 
 



Notice: Do not use the Polystes 1 W as an ohmmeter. Protect your circuit against large currents, and do 
not use currents larger than 20 mA. 

  
 Give your results by means of tables or plots. 
 
 When drawing the circuits, use the following symbols: 

 
 

E X P E R I M E N T A L      PR O B L E M.    S O L U T I O N 
 
Solution Problem 
Since a battery could be present, the first test should be intended to detect it. To do that, the voltage drops 
Vab, Vac and Vbc should be measured using a voltmeter. This test will show that no batteries are present. 
 
Next, a testing circuit as shown in figure 4.1 should be used. 

 
By means of this circuit, the electric conduction between a pair of terminals should be tested, marking all 
permutations and reversing the polarity. Resistor R1 is included to prevent a large current across the 
diode. One conclusion is that between A and C there is a diode and a resistor in series, although its 
current position is still unknown. The other conclusion is that a capacitor is tighted to terminal B. To 
determine the actual circuit topology, further transient experiments have to be conducted. 
 
In this way, it is concluded that the actual circuit inside the black box is that shown in figure 4.2. 



 
The best procedure for the resistor value determination is to plot a set of voltage and current values 
measured between A and C. Figure 4.3 shows the resulting plot. Extrapolating both linear regions, the 
values of Vo and Vz are obtained and the resistor value equals the reciprocal of the slope. 
 
Similar, the best method to measure the capacitor value is to build a testing circuit as shown in figure 4.4. 
The current is adjusted to full scale and then, the switch is opened. 
 
The time needed by the current to drop to its half value is measured. Applying the formulae t = RCIn(2), 
the value of C is obtained. 

 
Marking Code 
1. Determination of circuit topology: 8 points. 
     1.1 For discarding the presence of a battery: 1 point. 
     1.2 For drawing the exploring circuit which determine the circuit topology in a unique way: 7 points. 
2. Resistor and diode parameters value measurement: 8 points. 
     2.1 For drawing the measuring circuit: 2 points. 
     2.2 Error limits calculation: 3 points. 
     2.3 Result: 3 points. 
     2.3.1 Coarse method: 2 points. 
     2.3.2 Graphic method: 3 points. 
3. Capacitor value measurement: 4 points. 
     3.1 For drawing the measuring circuit: 2 points. 
     3.2 Error limits calculations: 2 points. 


