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Question 1. X-ray Diffraction from a crystal.

We wish to study X-ray diffraction by a cubic crystal lattice. To do this we start with the
diffraction of a plane, monochromatic wave that falls perpendicularly on a 2-dimensional
grid that consists of N; x N, slits with separations d, and d,. The diffraction pattern is
observed on a screen at a distance L from the grid. The screen is parallel to the grid and
L is much larger than d; and d,.

a- Determine the positions and widths of the principal maximum on the screen.
The width is defined as the distance between the minima on either side of the
maxima.

We consider now a cubic crystal, with lattice spacing a and size Nj.a x Ny.a x Nj.a. N is
much smaller than N,,. The crystal is placed in a parallel X-ray beam along the z-axis at
an angle ® (see Fig. 1). The diffraction pattern is again observed on a screen at a great
distance from the crystal.

Figure 1 Diffraction of a parallel X-ray beam along the z-axis.
The angle between the crystal and the y-axis is €.

b - Calculate the position and width of the maxima as a function of the angle ® (for
small ®).
- What in particular are the consequences of the fact that N; << N,,.

The diffraction pattern can also be derived by means of Bragg's theory, in which it is
assumed that the X-rays are reflected from atomic planes in the lattice. The diffraction
pattern then arises from interference of these reflected rays with each other.

c- Show that this so-called Bragg reflection yields the same conditions for the maxima
as those that you found in b.



In some measurements the so-called powder method is employed. A beam of X-rays is
scattered by a powder of very many, small crystals. (Of course the sizes of the crystals are
much larger than the lattice spacing, a).

Scattering of X-rays of wavelength 0.15 nm by Potassium Chloride [KCI] (which has a
cubic lattice, see Fig.2) results in the production of concentric dark circles on a
photographic plate. The distance between the crystals and the plate is 0.10 m, and the
radius of the smallest circle is 0.053 m (see Fig. 3). K" and Cl ions have almost the same
size, and they may be treated as identical scattering centres.

Figure 2. The cubic latice of < >

Potassium Chloride in which  Figure 3. Scattering of X-rays by a powder of KCI crystals
the K* and Cl'wons have results in the production of concentric dark circles on a
almost the same size. photographic plate.

d - Calculate the distance between two neighbouring K ions in the crystal.

Question 2. Electric experiments in the magnetosphere of the earth.

In May 1991 the spaceship Atlantis will be placed in orbit around the earth. We shall
assume that this orbit will be circular and that it lies in the earth's equatorial plane.

At some predetermined moment the spaceship will release a satellite S, which is attached
to a conducting rod of length L. We suppose that the rod is rigid, has negligible mass,
and is covered by an electrical insulator. We also neglect all friction. Let ¢ be the angle
that the rod makes to the line between the Atlantis and the centre of the earth. (see Fig.
1).

S also lies in the equatorial plane.
Assume that the mass of the satellite
is much smaller than that of the
Atlantis, and that L is much smaller
than the radius of the orbit.

a; - Deduce for which value(s) of !
the configuration of the ]

spaceship and satellite remain M } W

unchanged (with respect to the = . . - .
earth)? In other words, for Figure 1 The spaceship Atlantis (A) with a satellite
which value(s) of ¢ is o (S) in an orbit around the earth. The orbit lies in the
constant? earth’s equatorial plane.
The magnetic field (B) is perpendicular to the
diagram and is directed towards the reader.




a, - Discuss the stability of the equilibrium for each case.

Suppose that, at a given moment,
the rod deviates from the stable configuration by a small angle. The system will begin to
swing like a pendulum.

b - Express the period of the swinging in terms of the period of revolution of the system
around the earth.

In Fig. 1 the magnetic field of the earth is perpendicular to the diagram and is directed
towards the reader. Due to the orbital velocity of the rod, a potential difference arises
between its ends. The environment (the magnetosphere) is a rarefied, ionised gas with a
very good electrical conductivity. Contact with the ionised gas is made by means of
electrodes in A (the Atlantis) and S (the satellite). As a consequence of the motion, a
current, I, flows through the rod.

¢, - In which direction does the current flow through the rod? (Take ¢ = 0)

Data: - the period of the orbit T=54.10°s
- length of the rod L=20.10"m
- magnetic field strength of the eart at the height
of the satellite B =5,0.10°Wb.m?
- the mass of the shuttle Atlantis m = 1,0.10° kg

Next, a current source inside the shuttle is included in the circuit, which maintaines a net
direct current of 0.1 A in the opposite direction.

¢, - How long must this current be maintained to change the altitude of the orbit by 10
m.
Assume that (¢ remains zero. Ignore all contributions from currents in the
magnetosphere.
- Does the altitude decrease or increase?

Question 3. The rotating neutron star.

A 'millisecond pulsar' is a source of radiation in the universe that emits very short pulses
with a period of one to several milliseconds. This radiation is in the radio range of
wavelengths; and a suitable radio receiver can be used to detect the separate pulses and
thereby to measure the period with great accuracy.

These radio pulses originate from the surface of a particular sort of star, the so-called
neutron star. These stars are very compact: they have a mass of the same order of
magnitude as that of the sun, but their radius is only a few tens of kilometers. They spin
very quickly. Because of the fast rotation, a neutron star is slightly flattened (oblate).
Assume the axial cross-section of the surface to be an ellipse with almost equal axes.
Let r, be the polar and r, the equatorial radii; and let us define the flattening factor by:
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Consider a neutron star with a mass of 2.0 . 10%kg,
an average radius of 1.0. 10" m,
and a rotation period of 2.0 .10%s.

a- Calculate the flattening factor, given that the gravitational constant is 6.67 . 10!
N.m? kg?.

In the long run (over many years) the rotation of the star slows down, due to energy loss,
and this leads to a decrease in the flattening. The star has however a solid crust that
floats on a liquid interior. The solid crust resists a continuous adjustment to equilibrium
shape. Instead, starquakes occur with sudden changes in the shape of the crust towards
equilibrium. During and after such a star-quake the angular velocity is observed to
change according to figure 1.
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A sudden change in the shape of the crust of a
neutron star results in a sudden change of the
angular velocity.

b - Calculate the average radius of the liquid interior, using the data of Fig. 1. Make
the approximation that the densities of the crust and the interior are the same.
(Ignore the change in shape of the interior).

Question 4. Determination of the efficiency of a LED.
Introduction

In this experiment we shall use two modern semiconductors: the light-emitting diode
(LED) and the photo-diode (PD). In a LED, part of the electrical energy is used to excite
electrons to higher energy levels. When such an excited electron falls back to a lower

energy level, a photon with energy E ,,, is emitted, where

h.c

E = =
‘photon A

Here h is Planck's constant, c is the speed of light, and A is the wavelength of the emitted
light. The efficiency of the LED is defined to be the ratio between the radiated power, ¢
, and the electrical power used, P,



¢

P LED

‘r‘l:

In a photo-diode, radiant energy is transformed into electrical energy. When light falls on
the sensitive surface of a photo-diode, some (but not all) of the photons free some (but
not all) of the electrons from the crystal structure. The ratio between the number of
incoming photons per second, N, and the number of freed electrons per second, N,, is
called the quantum efficiency, q,

S
1l
’EZ |m2

The experiment

The purpose of this experiment is to determine the efficiency of a LED as a function of
the current that flows through the LED. To do this, we will measure the intensity of the
emitted light with a photo-diode. The LED and the PD have been mounted in two
boxes, and they are connected to a circuit panel (Fig. 1). By measuring the potential
difference across the LED, and across the resistors R, and R,, one can determine both
the potential differences across, and the currents flowing through the LED and the PD.

We use the multimeter to measure VOLTAGES only!! This is done by turning the knob
to position 'V'. The meter selects the appropriate sensitivity range automatically. If the

display is not on "AUTQO" switch "off" and push on "V" again. Connection: "COM" and
uv_Qu-

The box containing the photo-diode and the box containing the LED can be moved
freely over the board. If both boxes are positioned opposite to each other, then the LED,
the PD and the hole in the box containing the PD remain in a straight line.

Data:- The quantum efficiency of the photo-diode q, = 0.88
- The detection surface of the PD is 2.75 x 2.75 mm?
- The wave-length of the light emitted from the LED is 635 nm.
- The internal resistance of the voltmeter is: 100 MQ in the range up to
200 mV

10 MQ in the other ranges.
The range is indicated by small numbers on the display.
- Planck's constant h=6.63.10*J.s
- The elementary quantum of charge e=16.10"C
- The speed of light in vacuo c=3.00.108m.s?!



Figure 1.

R, = 100 Q
R, = variable resistor
R, = 1 MQ

The points labelled 0, 1, 2 and 3
are measuring points.

Figure 2 The experimental setup: a board and the
two boxes containing the LED and the photo-diode.
Instructions

1.  Before we can determine the efficiency of the LED, we must first calibrate the
photo-diode. The problem is that we know nothing about the LED.

Show experimentally that the relation between the current flowing through the
photo-diode and the intensity of light falling on it, I [J.s*.m™], is linear.

2.  Determine the current for which the LED has maximal efficiency.
3. Carry out an experiment to measure the maximal (absolute) efficiency of the LED.
No marks (points) will be allocated for an error analysis (in THIS experiment only).

Please summarize data in tables and graphs with clear indications of quantities (and
units).

Question 5. Determination of the ratio of the magnetic field strengths of
two different magnets.

Introduction

When a conductor moves in a magnetic field, currents are induced: these are the
so-called eddy currents. As a consequence of the interaction between the magnetic field
and the induced currents, the moving conductor suffers a reactive force. Thus an
aluminium disk that rotates in the neighbourhood of a stationary magnet experiences a
braking force.

Material available



1. Astand.

2. Aclamp.

3.  An homogenius aluminium disk on an axle, in a holder, that can rotate.

4.  Two magnets. The geometry of each is the same (up to 1%); each consists of a clip
containing two small magnets of identical magnetization and area, the whole
producing a homogenius field, B, or B,.

5. Two weights. One weight has twice the mass (up to 1%) of the other.

6. A stop-watch.

7. Aruler.

Figure 1.

The experiment

The aluminium disk is fixed to an axle, around which a cord is wrapped. A weight hangs
from the cord; and when the weight is released, the disk accelerates until a constant
angular velocity is reached. The terminal speed depends, among other things, on the
magnitude of the magnetic field strength of the magnet.

Two magnets of different field strengths B, or B,, are available. Either can be fitted on to
the holder that carries the aluminium disk: they may be interchanged.

Instructions

1. Think of an experiment in which the ratio of the magnetic field strengths B, and B,,
of the two magnets can be measured as accurately as possible.

2. Give a - short - theoretical treatment, indicating how one can obtain the ratio from
the measurements.

3. Carry out the experiment and determine the ratio.

4.  GIVE AN ERROR ESTIMATION.



Use of the stopwatch

Figure 2.

The stop-watch has three buttons: S;, S, and S, (see Fig. 2).

Button S, toggles between the date-time and the stop-watch modes. Switch to the
stop-watch mode. One should see this:

On pressing S, once, the stop-watch begins timing. To stop it, press S; a second time.

The stop-watch can be reset to zero by pressing S; once.



Solution of question 1.

a -

Consider first the x-direction. If waves coming from neighbouring slits (with
separation d,) traverse paths of lengths that differ by:
A, = n.A

where n, is an integer, then a principal maximum occurs. The position on the
screen (in the x-direction) is:
n,.A.L
x =

ny dl

since d, << d,.
The path difference between the middle slit and one of the slits at the edge is then:
N,
N, T —1.111.)\.
(7)

If on the other hand this path difference is:

then the first minimum, next to the principal maximum, occurs. The position of this
minimum on the screen is given by:

ﬁ.nl.)» sAL
2 2)" _mAL AL

" ) N, d N,

A.
N,.d,
The width of the principal maximum is accordingly:

2.Ax = 2. AL
14

~

A similar treatment can be made for the y-direction, in which there are N, slits with
separation d,. The positions and widths of the principal maximal are:

( ) (nl.)u.L nZ.A..L)

x 9 = b

' d d,

2Ax = 2. L 24y = 2. 0L
N.d, N,d,

An alternative method of solution is to calculate the intensity for the 2-dimensional
grid as a function of the angle that the beam makes with the screen.

In the x-direction the beam 'sees' a grid with spacing a, so that in this direction we
have:

AL
1 Ax = 2.M

a N,.a

xnl =




In the y-direction, the beam 'sees' a grid with effective spacing a.cos(®).
Analogously, we obtain:
n,.A.L AL

Ay = 2.———~
N,.a.cos(0)

Y a.cos(0)

In the z-direction, the beam 'sees' a grid with effective spacing a.sin(®). This gives
rise to principal maxima with position and width:
, ny.A.L , AL

- Ay = 2 ML
Yom T asin(®) YT TN asin(®)

This pattern is superimposed on the previous one. Since sin(0) is very small, only
the zeroth-order pattern will be seen, and it is very broad, since N,.sin(®) << N,.
The diffraction pattern from a plane wave falling on a thin plate of a cubic crystal,
at a small angle of incidence to the normal, will be almost identical to that from a

two-dimensional grid.

c - In Bragg reflection, the path difference for constructive interference between
neighbouring planes:

A = 2.asin(p) = 2.ad = nd -~ nA nA.L

- X =
a a

b~

Here ¢ is the angle of diffraction.
This is the same condition for a maximum as in section b.

d- For the distance, v2.a, between neighbouring K ions we have:

-9
d) = £ =003 53, A L OIS0 5y
L 0,1 2.sin(¢) 2.0,24
K-K = 2.0,31 = 0,44 nm
Marking Breakdown

a position of principal maxima :1
width of principal maxima 3
b lattice constants :1
effect of thickness 2
c Bragg reflection 2
d  Calculation of K-K spacing :1



Solution of question 2.

a,; - Since m, << m;, the Atlantis travels around the earth with a constant speed. The
motion of the satellite is composed of the circular motion of the Atlantis about the
earth and (possibly) a circular motion of the satellite about the Atlantis.

For m; we have:

) G.m .m, ) Gm,
m; Q"R = 22 - Q= PE

For m, we have:

G.m,m,

myL& = ~(F, - F)sin(a) = - - m, Q%R - L.cos(a))|.sin(a)

(R - L.cos(a)f

Using the approximation:

1 . 1 . 2.L.cos(a)
(R - L.cos(a)® R? R?
and equation (1), one finds:
. Gm, 2Gm, G.m, Gm, )
L& = - — PE L.cos(at) - FE R + PE L.cos(a) | .sin(at)
R
so:
& + 3.Q%sin(a).cos(e) = 0 (2)

If o isconstant: & =0 --> sin(t) =0 -> o =0; =T

-> cos(ex) =0 -> o =T/2;, o0 =3T/2



a, - The situation is stable if the moment M = m,.L.& L = m,L%& changes signina

manner opposed to that in which the sign of ¢ - &, changes:

sign(o - ¢¢,) -+ -+ -+ -+ -+
o 0 /2 T 3m/2 27
sign(M) + - -+ + - -+ + -

o 0 /2 T 3T/2 27

The equilibrium about the angles 0 en Tt is thus stable, whereas that around /2
and 3Tt/2 is unstable.

For small values of ¢&¢ equation (2) becomes:
& + 3.0%a =0

This is the equation of a simple harmonic motion.
The square of the angular frequency is:

2 =307

SO:
- Q3 - T, - 2—“ -1 (2“) = 0,58.T,

According to Lenz's law, there will be a current from the satellite (S) towards the
shuttle (A).

For the total energy of the system we have:
1 o Gmm, 1 Gmm,
u=0U, +U,=—-mQ°R" - ——= = ——,
P 2 R 2 R

A small change in the radius of the orbit corresponds to a change in the energy of:

1 Gmm, 1 )
AU = = AR = —mQ2R.AR
2" R? 2

In the situation under c, energy is absorbed from the system as a consequence of
which the radius of the orbit will decrease.

Is a current source inside the shuttle included in the circuit, which maintains a net
current in the opposite direction, energy is absorbed by the system as a
consequence of which the radius of the orbit will increase.

From the assumptions in ¢, we have:

1 mQ.AR

AU = Fovt = BILQRt = 2mQ>RAR - 1= L.
2 2 BIL

Numerical application gives for the time: t = 5,8 . 10% s; which is about the period
of the system.



Marking breakdown:

a, 1
a, 1
b - Atlantis in uniform circular motion :0,5
- calculation of the period Q - 0,5
- equation of motion of the satellite 12,5
- equation of motion for small angles :0,5
- period of oscillations 1
Cl - ' 1
c, - calculation of the time the current has to be maintained 01,5
- increase or decrease of the radius of the orbit :0,5
Solution of question 3.
a- 1st method !

& Pt
For equilibrium we have F, = F, + N EFC

where N is normal to the surface.

____________________________________________________
d

Resolving into horizontal and vertical . .
components, we find: Fg V2.

F,cos($p) = F, + N.sin(x)

F, sin( ) - Ncos(a) - F cos(¢p) = F, + Fsin(d).rg(e)

From:
Fy = (ii\l , F. = wir, x = rcos(¢), y = rsin(¢) en rg(a) = %
we find:
y.dy + ( - g;)xdx =0
where:
O’ 710

This means that, although r depends on x and y, the change in the factor in front of
xdx is so slight that we can take it to be constant. The solution of Eq. (1) is then an
ellipse:



2 2 r 2.3 2 3
x— + y— = 1 -~ P = 1 - w~.r ~ 1 _ w-.r
re2 rp2 r, GM 2.G.M
and from this it follows that:
r —r 2.3
e=—<—2 =27 ~3710"
I3 2.G

2nd method
For a point mass of 1 kg on the surface,

GM
r

U = w2.r2.cos¥(P)

pot

Upn =

n

N | =

The form of the surface is such that U, - U, = constant. For the equator (& = 0,
r = r,) and for the pole (® = /2, r = r,) we have:

3
GM _GM ) o w7,
= + —wr, > — =1+
r, r, r, 2.G.M
Thus:
wir]
r - r 1+ -1 w2r
€ = e P _ 2GM ~ ‘e ~ 3,7.10_4
r, w3 2.G
1+ ¢
2.G.M

As a consequence of the star-quake, the e
moment of inertia of the crust I, decreases .-
by Alm . 314,162

314181

314180

From the conservation of angular o

momentum, we have: 314,158

T T T
-10-05 00 05 10 15 20 25 30 35 40 45 50

IL.wy=0U,-Al)w, - AI =1.

m

After the internal friction has equalized the angular velocities of the crust and the
core, we have:



W, - 0,
a, +1)w, =, +1, - Alm).oo2 - Alm =, + Ic).T
2

I, ) (w, - By, Lo I ) (0, - Wy).0,
I, +1, (0, - 0)0, I, +1, (0, - 0)0,
I() R?
] 2
e c = r_c - Q = 1 - (wz wO) wl ~ 0.95
I+ 1, r?2 r (0, - W),
Marking breakdown
a 1st method - expressions for the forces :1
- equation for the surface 2
- equation of ellipse :1
- flattening factor :1
2nd method - energy equation
- flattening factor
b - conservation of angular momentum for crust :1.5
- conservation of angular momentum for crust and core :1.5
- moment of inertia for a sphere :1

- ratio r/r :1



Solution of question 4.
1.  The linearity of the photo-diode.

The linearity of the photo-diode can be checked by using the inverse square law between
distance and intensity. Suppose that the measured distance between the LED and the
(box containing the) PD is x. The intensity of the light falling on the PD satisfies:

IO
I(x) = —2
X

If the intensity is indeed proportional to the current flowing through the PD, it will also be
proportional to the voltage, V(x), measured across the resistor R3. From (1) it then
follows that:

1

Uze)

To obtain the correct value of V(x), one should subtract from the measured voltage V,
the voltage V, that one measures when the LED is turned off (but the LED box is still in
place in front of the PD).

x X

x(em)  Vi(V)  V,(V) i (HA) i (MA)  1/[i,() - ()] (RAY)

1.0 5.66 .003 6.23 .003 0.40
2.0 4.07 .004 4.48 .005 0.47
3.0 3.03 .005 3.33 .005 0.55
4.0 2.32 .006 2.55 .006 0.63
5.0 1.83 .006 2.01 .006 0.71
6.0 1.48 .007 1.63 .007 0.79
7.0 1.23 .007 1.35 .007 0.86
8.0 1.006  .008 1.107  .008 0.95
9.0 0.859  .009 0.945  .009 1.03
10.0 0.744  .009 0.818  .009 1.11
11.0 0.648  .010 0.713  .010 1.19
12.0 0.570  .011 0.627  .011 1.27
13.0 0.507  .012 0.558  .012 1.35
14.0 0456  .012 0.502  .012 1.43
15.0 0414 013 0455  .013 1.50
16.0 0373 .013 0410 .014 1.59
17.0 0.341 014 0375 .014 1.66
18.0 0312 .014 0343 .014 1.74
19.0 0.291 015 0320  .015 1.81
20.0 0.272  .015 0.299  .015 1.88

Plotted on a graph, one finds a perfect straight line.



2. The light intensity as a function of the electrical power of the LED

The photo-current iy, is determined from the voltage V over R3 = 1MQ. The meter itself
has an internal resistance of 100 MQ in the 200 mV range and 10 MQ in the other
ranges. We have then: ipp, = 1.01 Vresp. i,p = 1.1 V where V is in volts and i, in HA.
The current in amperes through the LED is the voltage over R1 in volts, divided by 100.

e PD | LED |

V, (V) V() - iy (HA) g (102 A) Vi (V) Prep (102 W) (i - )/Prep

1.806 .0061 1.98 2.70 1.752 4.73 0.419
1.637 .0061 1.79 2.30 1.742 4.01 0.446
1.511 .0061 1.66 2.08 1.735 3.61 0.460
1.225 .0061 1.34 1.606 1.722 2.77 0.484
1.117 .0061 1.22 1.433 1.718 2.46 0.496
0.903 .0061 0.99 1.123 1.705 1.91 0.518
0.711 .0061 0.78 0.889 1.708 1.52 0.513
0.448 .0061 049 0.555 1.673 0.93 0.527
0315 .0061 0.34 0.410 1.659 0.68 0.5

0.192 .0061 0.21 0.258 1.637 0.42 0.2

The efficiency is proportional to (i, - i,)/P, gp. In the graph of (i, - i,)/P, gp against i, ¢, the
maximal efficiency corresponds to iz, = 0,6 . 102 A. (See figure 2.)

3. Determination of the maximal efficiency.
The LED emits a conical beam with cylindrical symmetry. Suppose we measure the light
intensity with a PD of sensitive area d” at a distance r, from the axis of symmetry. Let the

intensity of the light there be ®(r,), then we have:

ir) = N N q)(ri)
i(r) = N.e = e = .g.e
! ¢ rir h.v Ui

2mrd 2, 2.1 h. :
P = E Q(r). T = ;E @(r).r; = 7nq—\;z ir).r,
S



r. (mm) V, (V) V, (V) (i, -i)r (x 10°Am) r. (mm) V, (V) V, (V) (i -ip).r, (x 10°

Am)
0 1.833 0.006 O 39 0.097 0.006
3 1.906 0.006 6.27 42 0.089 0.006 4.16
6 1.846 0.006 12.54 45 0.082 0.006 3.86
9 1.750 0.006 17.28 48 0.071 0.006 3.79
12 1.347 0.006 17.76 51 0.066 0.006 3.48
15 0.997 0.006 16.20 54 0.050 0.006 3.39
18 0.643 0.006 12.60 57 0.045 0.006 2.52
21 0.313 0.006 7.14 60 0.037 0.006 2.45
24 0.343 0.006 8.88 63 0.032 0.006 2.08
27 0.637 0.006 18.90 66 0.023 0.006 1.83
30 0.681 0.006 22.20 69 0.017 0.006 1.27
33 0.266 0.006 9.57 72 0.014 0.006 0.88
36 0.119 0.006 448 75 0.011 0.006 0.68
0.49
The efficiency = ®/P,, = 0.001
Marking breakdown
1 linearity of the PD
- inverse square law :1.5
- number of measuring points [1,3>; [3,5>; [5,..> :0.5/1.0/1.5
- dark current :0.5
- correct graph :1
2 determination of current at maximal effiency
- principle :0.5
- number of measuring points [1,3>; [3,5>; [5,..> :0.5/1.0/1.5
- graph efficiency-current :0.5
- determination of current at maximal efficiency :0.5
3 determination of the maximal efficiency
- determination of the emitted light intensity 1.5
- via estimation of the cone cross-section :0.5
- via measurement of the intensity distribution :1.5

- determination of the maximum efficiency :1



Solution of question 5.

1. Theory Let - the moment of inertia of the disk be
- the mass of the weight
- the moment of the frictional force
- magnetic field strength
- the radius of the axle
- the moment of the magnetic force

—_

SCETE

For the motion of the rotating disk we have:

Lo = (mg - ma).r - M, - M,

We suppose that M; is constant but not negligible. Because the disk moves in the
magnetic field, eddy currents are set up in the disk. The magnitude of these currents is
proportional to B and to the angular velocity. The Lorentz force as a result of the eddy
currents and the magnetic field is thus proportional to the square of B and to the angular
velocity, i.e.

My = c.B 2w
Substituting this into Eq. (1), we find:

Lo = (mg - ma)r - M, - c.B%w

M
g.r

2
v, = (g.r ).| m

After some time, the disk will reach its final constant angular velocity; the angular
acceleration is now zero and for the final velocity v, we find:

The final constant velocity is thus a linear function of m.
2.  The experiment

The final constant speed is determined by measuring the time taken to fall the last 21 cm
[this is the width of a sheet of paper].

In the first place it is necessary to check that the final speed has been reached. This is
done by allowing the weight to fall over different heights. It is clear that, with the weaker
magnet, the necessary height before the constant speed is attained will be larger.
Measurements for the weak magnet system:



height (m)

0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.10
1.30

smaller weight

5.04 = 0.02 (s)
4.67 = 0.04 (s)
4.59 = 0.05 (s)
4.44 =+ 0.06 (s)
4.49 = 0.05 (s)
4.43 + 0.03 (s)
4.43 + 0.04 (s)

time taken to fall

larger weight

2.00 = 0.01 (s)
1.71 = 0.02 (s)
1.55 = 0.02 (s)
1.48 + 0.01 (s)
1.44 + 0.04 (s)
1.38 = 0.03 (s)
1.35 = 0.02 (s)
1.34 += 0.05 (s)
1.33 = 0.04 (s)

3. Final constant speed measurements for both magnet systems and for several
choices of weight.

Measurements for the weak magnet:

weight T(s) T(s) T(s) T(s) <T>(s) <v> (m/s)
small 442 423 424 433 431+009 49 +=0.1
large 189 191 198 192 193+004 109+02
both 129 132 123 130 129+004 163 +05
Measurements for the strong magnet:
weight T(s) T(s) T(s) T(s) <T> (s) <v> (m/s)
small 893 9.01 9.17 891 9.0 =0.1 2.33 £0.03
large 403 392 403 395 398+ 0.06 528+ 0.08
both 253 252 253 248 252+003 83 0.1

4.  Discussion of the results:

- A graph between v, and the weight should be made.
- From Eq. (2) we observe that:
- both straight lines should intersect on the horizontal axis.
- from the square-root of the ratio of the slopes we have immediately the
ratio of the magnetic field strengths.
- For the above measurements we find:

B,
Al 2L
B B Ar \? Ar,\?
D1l 1722 | 69 - 2) 1 2n) L2 0.05
B, 15 B, 2 r 7,
B,
B,
— = 0.69 = 0.03

B,



Marking Breakdown

1

M, = c.B2o
Eq. (2)

Investigation of the range in which the speed is constant

Number of timing measurements [1,2,3,...]
Error estimation

graph - quality
- the lines intersect each other on the mass-axis
- calculation of B,/B,
- Exror calculation

— == O

:0,1,2



