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Abstract

The article contains problems given at th&" 26ternational Physics Olympiad (1989)
and their solutions. The 20PhO was the third IPhO organized in Warsaw, Rilan

Logo

The emblem of the XX International Physics
Olympiad contains a picture that is a historicalore of
the first hypernuclear event observed and inteegdrat
Warsaw by M. Danysz and J. Pniewskihe collision
of a high-energy particle with a heavy nucleus was
registered in nuclear emulsion. Tracks of the sdapn
particles emitted in the event, seen in the pictupper
star), consist of tracks due to fast pions (“thicks”)
and to much slower fragments of the target nucleus
(“black tracks”). The “black track” connecting theper
star (greater) with the lower star (smaller) in figgire
is due to a hypernuclear fragment, in this casetduee
part of the primary nucleus containing an unstable
hyperon A instead of a nucleon. Hyperfragments
(hypernuclei) are a new kind of matter in which tingclei contain not only protons and
neutrons but also some other heavy particles.

In the event observed above the hypefgrbound with nucleon, decays like a free
particle through a week (slow) process only. Tlaist fstrongly suggested the existence of a
new gquantum number that could explain suppressioth® decay, even in presence of
nucleons. Indeed, this was one of the observatiwats 30 months later, led to the concept of
strangeness.

Introduction

Theoretical problems (including solutions and nwgkischemes) were prepared
especially for the 201PhO by Waldemar Gorzkowski. The experimental fEob(including
the solution and marking scheme) was prepared ediyefor this Olympiad by Andrzej
Kotlicki. The problems were refereed independe(dtyd many times) by at least two persons
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¥ M. Danysz and J. PniewslBull. Acad. Polon. Sci3(1) 42 (1952) andPhil. Mag, 44, 348 (1953). Later the
same physicists, Danysz and Pniewski, discoveredfitst case of a nucleus with two hyperons (double
hyperfragment).



after any change was made in the text to avoid peeted difficulties at the competition. This
work was done by:

First Problem:
Andrzej Szadkowski, Andrzej Szymacha, Wiodzimiermigr

Second Problem:
Andrzej Szadkowski, Andrzej Szymacha, Wtodzimiermiér, Stanistaw Woronowicz

Third Problem:
Andrzej Rajca, Andrzej Szymacha, Wtodzimierz Ungier

Experimental Problem:
Krzysztof Korona, Anna Lipniacka, Jerzy tusakowskiino Sikora

Several English versions of the texts of the pnoislewere given to the English-
speaking students. As far as | know it happenedh®first time (at present it is typical). The
original English version was accepted (as a verfiorthe students) by the leaders of the
Australian delegation only. The other English-spegkdelegations translated the English
originals into English used in their countries. Tet result was that there were at least four
English versions. Of course, physics containechemt was exactly the same, while wording
and spelling were somewhat different (the diffeesriowever, were not too great).

This article is based on the materials quoted atetid of the article and on personal
notes of the author.
THEORETICAL PROBLEMS
Problem 1

Consider two liquids A and B insoluble in each othiéhe pressureg; (i = A or B) of
their saturated vapors obey, to a good approximatiee formula:

In(pi/po)=%+,8i; i=AorB,

wherep, denotes the normal atmospheric presslirethe absolute temperature of the vapor,
and a, and S (i = A or B) — certain constants depending on the lig@iche symbol In
denotes the natural logarithm, i.e. logarithm vintisee = 2.7182818...)

The values of the ratip/po for the liquids A and Bt the temperature 40 and 90C
are given in Tab. 1.1.

Tablel.1
o pi/po
tr°cl = A =B
40 0.284 0.07278
90 1.476 0.6918

The errors of these values are negligible.

A. Determine the boiling temperatures of the liquidam&l B under the pressysg



B. The liquids A and B were poured into a vessel mcl the layers shown in Fig. 1.1
were formed. The surface of the liquid B has bemrered with a thin layer of a non-volatile
liquid C, which is insoluble in the liquids A andd®d vice versa, thereby preventing any free
evaporation from the upper surface of the liquidTBge ratio of molecular masses of the
liquids A and B (in the gaseous phase) is:

V= Hnl Hg =8.

Po

v

1 T
Fig. 1.1 Fig. 1.2

The masses of the liquids A and B were initiallg #ame, each equalto= 100g. The
heights of the layers of the liquids in the vessetl the densities of the liquids are small
enough to make the assumption that the presswameyipoint in the vessel is practically equal
to the normal atmospheric presspse

The system of liquids in the vessel is slowly, bomtinuously and uniformly, heated. It
was established that the temperataref the liquids changed with time as shown
schematically in the Fig. 1.2.

Determine the temperaturds and t, corresponding to the horizontal parts of the
diagram and the masses of the liquids A and B attithe 7. The temperatures should be
rounded to the nearest degree°@) and the masses of the liquids should be detexnio
one-tenth of gram.

REMARK: Assume that the vapors of the liquids, to a gqmat@imation,

(1) obey the Dalton law stating that the pressure wibdure of gases is equal to
the sum of the partial pressures of the gases fgythie mixture and

(2) can be treated as perfect gases up to the pressaressponding to the
saturated vapors.

Solution

PART A

The liquid boils when the pressure of its saturategor is equal to the external
pressure. Thus, in order to find the boiling terapane of the liquid (i - A or B), one should
determine such a temperatdig (or t,;) for which pi/po = 1.

ThenIn(p./ p,) = G and we have:

ai
Tbi = _E .



The coefficientsa; and 5 are not given explicitly. However, they can beco&ted

from the formula given in the text of the problelrar this purpose one should make use of
the numerical data given in the Tab. 1.1.

For the liquid A, we have:

an

In0.284= + L,
(40+27315K
InL476=— 92 4 p.
(90+27315K
After subtraction of these equations, we get:
In0.284-1n1.476= aA( ! - ! jK'l.
40+27315 90+27315
0.284
In—==_—"
a,=—— 1.476 K =-3748.49K

40+272.15 9C+27215

Hence,
aA

=1n0.284-
Pa (40+27315K

=10.711

Thus, the boiling temperature of the liquid A isuabto

T, .= 3748.49K/10.71% 349.95 K.

In the Celsius scale the boiling temperature oflitheéd A is

t,, = (349.95 — 273.158F = 76.80C = 77°C.

For the liquid B, in the same way, we obtain:

a, = -5121.64 K,
3, =13.735,
T, =372-89 K,
t,, =99.74°C=100°C.
PART B

As the liquids are in thermal contact with eacheotltheir temperatures increase in time
in the same way.

At the beginning of the heating, what correspomdtheé left sloped part of the diagram,
no evaporation can occur. The free evaporation fitwenupper surface of the liquid B cannot
occur - it is impossible due to the layer of tha+wolatile liquid C. The evaporation from the
inside of the system is considered below.



Let us consider a bubble formed in the liquid Arothe liquid B or on the surface that
separates these liquids. Such a bubble can be dodue to fluctuations or for many other
reasons, which will not be analyzed here.

The bubble can get out of the system only whenpttessure inside it equals to the
external pressureg, (or when it is a little bit higher tham,). Otherwise, the bubble will

collapse.

The pressure inside the bubble formed in the volafrtbe liquid A or in the volume of
the liquid B equals to the pressure of the satdraspor of the liquid A or B, respectively.
However, the pressure inside the bubble formederstirface separating the liquids A and B
is equal to the sum of the pressures of the sadinspors of both these liquids, as then the
bubble is in a contact with the liquids A and Btla same time. In the case considered the
pressure inside the bubble is greater than thesyres of the saturated vapors of each of the
liquids A and B (at the same temperature).

Therefore, when the system is heated, the pressure reached first in the bubbles that

were formed on the surface separating the liquitlsts, the temperaturgcorresponds to a
kind of common boiling of both liquids that occunsthe region of their direct contact. The
temperaturet, is for sure lower than the boiling temperatures ofligeids A and B as then

the pressures of the saturated vapors of the Bgdiednd B are less thep, (their sum equals
to p, and each of them is greater than zero).

In order to determine the value Qfwith required accuracy, we can calculate the values
of the sum of the saturated vapors of the liquidsnd B for several values of the temperature
t and look when one gets the valpg.

From the formula given in the text of the probleme, have:

Pa _ e?%, (1)
Po
Pe o1 @)
Po
p, + P equals top, if
&+& =1.
Po  Po

Thus, we have to calculate the values of the falgwunction:

an ., s , 3
t+ty

B
y(x) =e "y

(where t, =273 15C) and to determine the temperaturet,, at which y(t) equals to 1.
When calculating the values of the functiogit we can divide the intervals of the
temperatures by 2 (approximately) and look whether the resafesgreater or less than 1.

We have:



Table 1.2

t y(®)

40°C <1 (see Tab. 1.1)
77°C > 1 (ast, is less thart,,)
59°C 0.749<1

70°C 1.113>1

66°C 0.966 < 1

67°C 1.001>1
66.5°C 0.983<1

Therefore,t, = 67° C (with required accuracy).

Now we calculate the pressures of the saturatedrsapf the liquids A and B at the
temperaturd, = 67°C, i.e. the pressures of the saturated vagahediquids A and B in each
bubble formed on the surface separating the liqutdsm the equations (1) and (2), we get:

p,= 0.734p,,
pg = 0.267p,,
(Pat Pg =1.001p, = py) -

These pressures depend only on the temperaturetterdfore, they remain constant
during the motion of the bubbles through the ligBidThe volume of the bubbles during this
motion also cannot be changed without violatiothefrelationp, + p; = p, . It follows from
the above remarks that the mass ratio of the gaturaapors of the liquids A and B in each
bubble is the same. This conclusion remains vaitbag as both liquids are in the system.
After total evaporation of one of the liquids teenperature of the system will increase again
(second sloped part of the diagram). Then, howdkiermass of the system remains constant
until the temperature reaches the valuet which the boiling of the liquid (remained ireth

vessel) starts. Therefore, the temperattye(the higher horizontal part of the diagram)
corresponds to the boiling of the liquid remainedhe vessel.

The mass ratian,/m, of the saturated vapors of the liquids A and B:ach bubble
leaving the system at the temperattres equal to the ratio of the densities of thesgovs
Pl pg. According to the assumption 2, stating that tapors can be treated as ideal gases,

the last ratio equals to the ratio of the prodwétthe pressures of the saturated vapors by the
molecular masses:

ﬂz&szﬂAz&ﬂ.
M Pg PeMs DPs

Thus,

M = 220.
mB
We see that the liquid A evaporates 22 times fdktar the liquid B. The evaporation of
100 g of the liquid A during the “surface boilingt the temperaturg is associated with the



evaporation of 100 g / 224.5 g of the liquid B. Thus, at the tinzg the vessel contains 95.5
g of the liquid B (and no liquid A). The temperaguy, is equal to the boiling temperature of
the liquid B:t, =100°C.

Marking Scheme

1. physical condition for boiling 1 point
2. boiling temperature of the liquid A (numerical vaju 1 point
3. boiling temperature of the liquid B (numerical vaju 1 point
4. analysis of the phenomena at the temperature 3 points
5. numerical value of, 1 point
6. numerical value of the mass ratio of the saturaggzbrs in the bubble 1 point
7. masses of the liquids at the time 1 point
8. determination of the temperatutre 1 point

REMARK: As the sum of the logarithms is not equalthe logarithm of the sum, the
formula given in the text of the problem should hetapplied to the mixture of the saturated
vapors in the bubbles formed on the surface sapgr#ite liquids. However, the numerical
data have been chosen in such a way that evenirsc@tiect solution of the problem gives
the correct value of the temperaturgwithin required accuracy). The purpose of that veas

allow the pupils to solve the partd® the problem even if they determined the tempeest,

in a wrong way. Of course, one cannot receive amytp for an incorrect determination of the
temperaturd, even if its numerical value is correct.

Typical mistakes in the pupils’ solutions

Nobody has received the maximum possible numbepamhts for this problem,
although several solutions came close. Only twdig@pants tried to analyze proportion of
pressures of the vapors during the upward moveuofahe bubble trough the liquid B. Part of
the students confused Celsius degrees with KelWhany participants did not take into
account the boiling on the surface separatingitheds A and B, although this effect was the
essence of the problem. Part of the students, whadatice this effect, assumed a priori that
the liquid with lower boiling temperature "must" thee first to evaporate. In general, this need
not be true: ify were, for example, 1/8 instead 8, then liquid Aeatthan B would remain in
the vessel. As regards the boiling temperatureactioally nobody had any essential
difficulties.

Problem 2

Three non-collinear point3;, P, andP3, with known massesy, m, andmg, interact
with one another through their mutual gravitatiofwates only; they are isolated in free space
and do not interact with any other bodies. badenote the axis going through the center-of-
mass of the three masses, and perpendicular ttridimgle P,1P,P3;. What conditions should
the angular velocitiewof the system (around the axasand the distances:

PP, =a15, PoP3=az, PiP3=ays,

fulfill to allow the shape and size of the triangle?,P; unchanged during the motion of the
system, i.e. under what conditions does the syst¢ate around the axigas a rigid body?



Solution

As the system is isolated, its total energy, iree sum of the kinetic and potential
energies, is conserved. The total potential enefgihe points B P, and B with the masses
m,, m, and m, in the inertial system (i.e. when there are natiakforces) is equal to the

sum of the gravitational potential energies oftladl pairs of points ), (P-,P;) and (R,Ps).
It depends only on the distancag, a,, and a,, which are constant in time. Thus, the total

potential energy of the system is constant. Asresequence the kinetic energy of the system
is constant too. The moment of inertia of the gystdth respect to the axig depends only
on the distances from the points P, and R to the axiso which, for fixeda,,, a,, anda,,

do not depend on time. This means that the monfemiedia | is constant. Therefore, the
angular velocity of the system must also be comstan

G =const. (1)

This is the first condition we had to find. The etlconditions will be determined by
using three methods described below. However, pioorperforming calculations, it is
desirable to specify a convenient coordinates systewhich the calculations are expected to
be simple.

Let the positions of the pointg,A? and B with the massesy, m, and m, be given by

the vectorsr;, r, andr,. For simplicity we assume that the origin of tl®inate system is
localized at the center of mass of the points??and R with the masses, m, and m, and
that all the vectors,, r, andr, are in the same coordinate plane, e.qg. in theeptay). Then
the axiso is the axisz.

In this coordinate system, according to the deé@iniof the center of mass, we have:

myr, +myr, +myr, =0 (2)
Now we will find the second condition by using setenethods.
FIRST METHOD

Consider the point{Rvith the massn, . The points Pand B act on it with the forces:

F,=G n;rgnz (ry=rp), (3)

2

Fu=G n;gng (r3=ry). 4)

3
whereG denotes the gravitational constant.
In the inertial frame the sum of these forces ésdéntripetal force
F,=-mawr,,
which causes the movement of the poinal®ng a circle with the angular velocity. (The
moment of this force with respect to the aziss equal to zero.) Thus, we have:
F,,+F,=F,.. (5)

In the non-inertial frame, rotating around the aziswith the angular velocity. , the
sum of the forces (3), (4) and the centrifugal éorc



F',=mar,
should be equal to zero:
F,+F,+F.,=0. (6)
(The moment of this sum with respect to any axisaégjto zero.)
The conditions (5) and (6) are equivalent. Theyedhe same vector equality:

3
2 3

G IT;?IZ (rz _rl) +G AL (rs _rl) + rnla)zrl =0, (7’)

3

m m Gm, Gm | _ "
G—2myr, +G—2myr,+mr (af ————j_o (7
afZ ? af3 : ! a12 af3

From the formula (2), we get:

myr, ==—mr, =Myl (8)

Using this relation, we write the formula (7) iretfollowing form:

m, m, Gm, _Gm |_
G—2(—myr, —myr,) +G—myr, +myr (a)z— ——j_o,
A a,  aj

Gm, Gm, Gmlj (1 lj _
r 7 - - +r. —-—|G =0.
1”‘1[ o, oy ay ) lay ay)

The vectorsr, andr, are non-collinear. Therefore, the coefficientshim last formula

must be equal to zero:
1 1
— ~ 5 [Gmm, =0,
T

ofw-Em_Sm_Sm).q

3 3

a, &, a,
The first equality leads to:

1.1
&, a
and hence,
Q3 = -
Let &, =a,, =a. Then the second equality gives:
w’a® =GM 9)
where
M=m+m,+m, (10)

denotes the total mass of the system.



In the same way, for the points &d B, one gets the relations:
a) the point R

a,,=a, wa’=GM
b) the point B

a,=8,, wa’®=GM

Summarizing, the system can rotate as a rigid bhba@yl the distances between the
masses are equal:

Q, =8y =3, =4, (11)
the angular velocity. is constant and the relation (9) holds.
SECOND METHOD

At the beginning we find the moment of inertiaof the system with respect to the axis
o . Using the relation (2), we can write:

O=(myr, +myr, +myr)* =mir +mer2 +mir2 + 2mmyr r, + 2mmyr,r, + 2mmr.r,.

Of course,
r2=r? 1=1,2,3
The quantities2r;r; (i, j = 1, 2, 3) can be determined from the following iolrg relation:
a’ :‘ri —rj‘z =(r-r)i =i 4l =2nr =P i =2nr
We get:
2rr, =r2+r’-a’.

With help of this relation, after simple transfotimas, we obtain:

0= (myr, +myr, +myr;)? = (m +m, +m)(mr” +myr; +mr’)-> mma’.

i<j

The moment of inertid of the system with respect to the axis according to the definition
of this quantity, is equal to

| =mr” +mpr +myrd
The last two formulae lead to the following express
M = 1
whereM (the total mass of the system) is defined by theéda (10).
In the non-inertial frame, rotating around the aziswith the angular velocity. , the
total potential energy,,, is the sum of the gravitational potential energies

m.
Vij:—GL; ihbj=1,2,3<]
&

of all the masses and the potential energies



V, =-1a’mr?; i=1,2,3

of the masses (i =1, 2, 3) in the field of the centrifugal force:

) 3 ) )
Vi =GZ%-%MZW3 =6y T - 147 =GZM-%afﬁme,—af =
i<j ij i=1 i<j ij i<j ij i<j

_ F 2, G
_ ;mm{m &‘%J

W’ G
Vit = _z mm; [m auz +_]-

A mechanical system is in equilibrium if its tof@tential energy has an extremum. In
our case the total potential energy, is a sum of three terms. Each of them is propaation
to:

f@=2 a2+C
a

The extrema of this function can be found by takieglerivative with respect ta and
requiring this derivative to be zero. We get:

ﬁa—%:o.
M a
It leads to:
wa’=GM or wa®=G(m +m,+m,).

We see that all the terms ¥, have extrema at the same valuegipfa. (In addition,

the values ok and & should obey the relation written above.) It isyetmsshow that it is a
maximum. Thus, the quantiy,, has a maximum a, =a.

This means that our three masses can remain in tiiggdnces only if these distances
are equal to each other:

Ap ==z =4a
and if the relation
w'a®=GM,
whereM the total mass of the system, holds. We have addaihe conditions (9) and (11)
again.
THIRD METHOD
Let us consider again the point\®ith the massn, and the forces,, andF;, given by

the formulae (3) and (4). It follows from the tedftthe problem that the total moment (with
respect to any fixed point or with respect to thesmcenter) of the forces acting on the point
P1 must be equal to zero. Thus, we have:

F21><I’1+F31><r120

where the symbok denotes the vector product. Therefore



But

Thus:

ﬂr Xr, ﬁr3><r1:O.
ay, as
Using the formula (8), the last relation can betten as follows:

1
g(_mrl _rr%rg)xrl +ﬁ3r3 xr, = 0,

2 3

msr xr, _|_ms
a ay;

1 1 _
g—g ryxr, =0.

The vectors, andr, are non-collinear (and different from 0). Therefore

ryxr, =0,

ryxr, 70
and
1 1
53 -0
a13 2
hence,
&y = 3.
Similarly, one gets:
=ay, (=a).

We have re-derived the condition (11).

Taking into account that all the distancgs have the same valwe from the equation
(7) concerning the point;Pusing the relation (2) we obtain:

Gn‘;r:lz (rz_rl)'i'Gm;rgn3 (r3_r1)+rnla)2rlzo’

(Gml+sz m3jmlr +mawr, =

This is the condition (9). The same condition is igotesult of similar calculations for the
points B and R.



The method described here does not differ essgnfralin the first method. In fact
they are slight modifications of each other. Howewé is interesting to notice how
application of a proper mathematical language, &@. vector product, simplifies the
calculations.

The relation (9) can be called a “generalized Képlaw” as, in fact, it is very similar
to the Kepler's law but with respect to the manyhpsystem. As far as | know this
generalized Kepler's law was presented for the finse right at the 201PhO.

Marking scheme

1. the proof that. = const 1 point
2. the conditions at the equilibrium (conditions tioe forces

and their moments or extremum of the total potéetargy) 3 points
3. the proof of the relation; =a 4 points

4. the proof of the relation‘a® = GM 2 points
Remarks and typical mistakes in the pupils' solut®

No type of error was observed as predominant irpthpls’ solutions. Practically all the
mistakes can be put down to the students' scamtriexgge in calculations and general lack of
skill. Several students misunderstood the texhefgroblem and attempted to prove that the
three masses should be equal. Of course, this mvpsssible. Moreover, it was pointless,
since the masses were given. Almost all the ppeids tried to solve the problem by
analyzing equilibrium of forces and/or their monsen®nly one student tried to solve the
problem by looking for a minimum of the total pdiehenergy (unfortunately, his solution
was not fully correct). Several participants solvkd problem using a convenient reference
system: one mass in the origin and one mass or-#xés. One of them received a special
prize.

Problem 3

The problem concerns investigation of transformihg tlectron microscope with
magnetic guiding of the electron beam (which isstsrated with the potential differentle=
511 kV) into a proton microscope (in which the probeam is accelerated with the potential
difference-U). For this purpose, solve the following two prohke

A. An electron after leaving a device, which acceéstat with the potential difference
U, falls into a region with an inhomogeneous fi@dyenerated with a system of stationary
coilsLy, Ly, ... ,Ln The known currents in the coils aggis, ... ,in, respectively.

What should the currents, i2, ... , iy in the coilsLy, Ly, ... , L, be, in order to guide
the proton (initially accelerated with the potehtl#ference—U) along the same trajectory
(and in the same direction) as that of the ele€tron

HINT: The problem can be solved by finding a conditiomlernwhich the equation
describing the trajectory is the same in both cdsesay be helpful to use the relation:

dt 2 dt 2dt"



B. How many times would the resolving power of theab microscope increase or
decrease if the electron beam were replaced wétlptbton beam? Assume that the resolving
power of the microscope (i.e. the smallest distébeteveen two point objects whose circular
images can be just separated) depends only onahe properties of the particles.

Assume that the velocities of the electrons andopo before their acceleration are
zero, and that there is no interaction between ovagnetic moment of either electrons or
protons and the magnetic field. Assume also thaetactromagnetic radiation emitted by the
moving particles can be neglected.

NOTE: Very often physicists use 1 electron-volt (1 e&@d its derivatives such as 1
keV or 1 MeV, as a unit of energy. 1 electron-vslthe energy gained by the electron that
passed the potential difference equal to 1 V.

Perform the calculations assuming the followingadat

Rest energy of electron:  E, = m«? = 511 keV
Rest energy of proton: E,= m[,c2 =938 MeV

Solution

PART A

At the beginning one should notice that the kinetergy of the electron accelerated
with the potential difference = 511 kV equals to its rest ener@y. Therefore, at least in the
case of the electron, the laws of the classicakigisycannot be applied. It is necessary to use
relativistic laws.

The relativistic equation of motion of a particletivthe charge in the magnetic field
B has the following form:
d
—pn=F
at P=F

wherep = myp denotes the momentum of the particle (vector) and
F.=evxB

is the Lorentz force (its value BvB and its direction is determined with the right tawle).
m, denotes the (rest) mass of the particle andenotes the velocity of the particle. The

guantity y is given by the formula:

The Lorentz forceF, is perpendicular to the velocity of the particle and to its momentum
p=mw . Hence,

FV=F [p=0.

Multiplying the equation of motion bp and making use of the hint given in the text @& th
problem, we get:



It means that the value of the particle momentund (e value of the velocity) is constant
during the motion:

p=myVy = const; VvV = const.
The same result can be obtained without any formul#ge following way:

The Lorentz forceF, is perpendicular to the velocity (and to the momentum as
p =myw ) and, as a consequence, to the trajectory of antcle. Therefore, there is no force
that could change the component of the momenturgetanto the trajectory. Thus, this
component, whose value is equal to the lengtp ,ashould be constanfi =const. (The same
refers to the component of the velocity tangenh®trajectory ap = myp ).

Let s denotes the path passed by the particle alongdfextory. From the definition of
the velocity, we have:

ds
o =V.
Using this formula, we can rewrite the equatiomaftion as follows:
Vip :Eip =£P =F,
ds dt ds dt
d, -k
ds \
Dividing this equation by and making use of the fact thlat const, we obtain:
d F
‘a5 w
and hence
d,.R
ds wvp

wheret =p/ p=v/v is the versor (unit vector) tangent to the traject The above equation
is exactly the same for both electrons and protiogausd only if the vector quantity:

R

vp
is the same in both cases.

Denoting corresponding quantities for protons witle same symbols as for the
electrons, but with primes, one gets that the daiunder which both electrons and protons
can move along the same trajectory, is equivatetii¢ equality:

R_F
Vp VI pI "
However, the Lorentz force is proportional to treue of the velocity of the particle,
and the directions of any two vectors of the foilagvthree:t (or v), F., B determine the

direction of the third of them (right hand rulehdrefore, the above condition can be written
in the following form:



Hence,

P P

This means that at any point the direction of treddfB should be conserved, its
orientation should be changed into the opposite and the value of the field should be
multiplied by the same fact@i/p. The magnetic fiel® is a vector sum of the magnetic fields
of the coils that are arbitrarily distributed iretepace. Therefore, each of this fields should be
scaled with the same factqy/p. However, the magnetic field of any coil is prapmmal to
the current flowing in it. This means that the regdiscaling of the fields can only be
achieved by the scaling of all the currents wit s$ame factomp/p:

B'=

@ | o

Now we shall determine the rafdp. The kinetic energies of the particles in both sase
are the same; they are equalBp= e|U| =511 keV. The general relativistic relation between

the total energyE of the particle with the rest enerdy and its momentunp has the
following form:

EZ = Eg + p2C2
where ¢ denotes the velocity of light.

The total energy of considered particles is equahesum of their rest and kinetic
energies:

E=E, +E,.
Using these formulae and knowing that in our cages e|U| = E,, we determine the
momenta of the electronp)(and the protong)). We get:
a) electrons:

(E.+E)* =El+p°c’,

E
p :_e\/g
C
b) protons
(E, +E.)* =E. + p°c?,
2 2
p= E 5 +1| - 5
c || E E.
Hence,

and



It is worthwhile to notice that our protons aramiakt classical’, because their kinetic
energy E, (= E, )is small compared to the proton rest enekgy Thus, one can expect that

the momentum of the proton can be determined, witjood accuracy, from the classical
considerations. We have:

IZCZ B pZC

2m_ 2m.c? 2E,

p p

1
=2,

On the other hand, the momentum of the proton dwtexd from the relativistic
formulae can be written in a simpler form sirtg£E. » 1. We get:

E I(E, .\ (E)) _E [.E E. LE _1 o
p':_e P+l || === 2P +]1=— (2R == 2EeEp'
C E, E, C E. C E. ¢

In accordance with our expectations, we have obthihe same result as above.
PART B

2
’

The resolving power of the microscope (in the megmrentioned in the text of the
problem) is proportional to the wavelength, in oase to the length of the de Broglie wave:

2=

Y
whereh denotes the Planck constant gnd the momentum of the particle. We see tha
inversely proportional to the momentum of the deti Therefore, after replacing the electron
beam with the proton beam the resolving power beéllchanged by the factpfp' =1/35. It
means that our proton microscope would allow oleteym of the objects about 35 times
smaller than the electron microscope.

Marking scheme

1. the relativistic equation of motion 1 point
2. independence @fandv of the time 1 point
3. identity ofeB/p in both cases 2 points
4. scaling of the fields and the currents withshene factor 1 point
5. determination of the momenta (relativistically) 1 point

6. the ratio of the momenta (numerically) 1 poin
7. proportionality of the resolving power.to 1 point

8. inverse proportionality ofi top 1 point

9. scaling of the resolving power 1 point

Remarks and typical mistakes in the pupils' solut®

Some of the participants tried to solve the problnusing laws of classical mechanics
only. Of course, this approach was entirely wrogme students tried to find the required
condition by equating "accelerations" of particles both cases. They understood the
"acceleration" of the particle as a ratio of thecéoacting on the particle to the "relativistic"
mass of the particle. This approach is incorreastFin relativistic physics the relationship
between force and acceleration is more complicdtatbals with not one "relativistic" mass,



but with two "relativistic" masses: transverse alwthgitudinal. Secondly, identity of
trajectories need not require equality of acceienat

The actual condition, i.e. the identity eB/p in both cases, can be obtained from the
following two requirements:

1° in any given point of the trajectory the curvatshould be the same in both cases;
2° in the vicinity of any given point the plane taiming a small arc of the trajectory
should be oriented in space in both cases in tne segay.

Most of the students followed the approach desdrjbst above. Unfortunately, many
forgot about the second requirement (they neglethedvector character of the quantity
eB/p).

EXPERIMENTAL PROBLEM*

The following equipment is provided:

1. Two piezoelectric discs of thickness 10 mm with eraped electrodes (Fig. 4.1) fixed in
holders on the jaws of the calipers;

10 mm

Fig. 4.1

Electrodes

2. The calibrated sine wave oscillator with a photograpthe control panel, explaining the
functions of the switches and regulators;

3. A double channel oscilloscope with a photographtha control panel, explaining the
functions of the switches and regulators;

4. Two closed plastic bags containing liquids;

5. A beaker with glycerin (for wetting the discs swuda to allow better mechanical
coupling);

6. Cables and a three way connector;

7. A stand for support the bags with the liquids;

8. Support and calipers.

A piezoelectric material changes its linear dimensiunder the influence of an electric
field and vice-versa, the distortion of a piezoglecmaterial induces an electrical field.
Therefore, it is possible to excite the mechanidhtations in a piezoelectric material by

! The Organizing Committee planned to give anothgpeemental problem: a problem on high
superconductivity. Unfortunately, the samples gfeseonductors, prepared that time by a factoryeveérvery
poor quality. Moreover, they were provided aftdoreg delay. Because of that the organizers dedidee this
problem, which was also prepared, but consideredszzond choice.



applying an alternating electric field, and alsoimoluce an alternating electric field by
mechanical vibrations.

A. Knowing that the velocity of longitudinal ultrasorwaves in the material of the disc

is about410° m/s, estimate roughly the resonant frequency ef rtiechanical vibrations
parallel to the disc axis. Assume that the disdéxd do no restrict the vibrations. (Note that
other types of resonant vibrations with lower aytar frequencies may occur in the discs.)

Using your estimation, determine experimentallye tfrequency for which the
piezoelectric discs work best as a transmitteriveceset for ultrasound in the liquid. Wetting
surfaces of the discs before putting them agaimesbaigs improves penetration of the liquid in
the bag by ultrasound.

B. Determine the velocity of ultrasound for both lidgi without opening the bags and
estimate the error.

C. Determine the ratio of the ultrasound velocitiesloth liquids and its error.

Complete carefully the synopsis sheet. Your regbduld, apart from the synopsis
sheet, contain the descriptions of:

- method of resonant frequency estimation;
- methods of measurements;
- methods of estimating errors of the measured qiiesand of final results.

Remember to define all the used quantities anctpéaan the symbols.

Synopsis Sheet!

Formula for estimating the resonant frequency: Results (with units):

Measured best transmitter frequency (with units): Error:

Definition of measured quanti Symbol:  Results: Error:

Final formula for ultrasound velocity in liquid:

Velocity of ultrasound (with units): Erro
Liquid A
Liquid B
Ratio of velocities: Error:

! In the real Synopsis Sheet the students had rpacedor filling.



Solution (draft)

A. As the holders do not affect vibrations of the disc may expect antinodes on the
flat surfaces of the discs (Fig. 4.2; geometric pprtions not conserved). One of the
frequencies is expected for

A=V
2f

\'

N

where v denotes the velocity of longitudinal ultrasonicwedits value is given in the text of
the problem),f - the frequency and - the thickness of the disc. Thus:

Numerically f =2[10°Hz = 200 kHz.

Mode considered in the problem
(schematically)

I
1
|
|
|
|
|
|
|
|
i
1
1
I

the disc

A
Y

= A2
Fig. 4.2

One should stress out that different modes ofafibns can be excited in the disc with
height comparable to its diameter. We confine camsaerations to the modes related to
longitudinal waves moving along the axis of thecd&s the sound waves in liquids are
longitudinal. We neglect coupling between differembdes and require antinodes exactly at
the flat parts of the disc. We assume also thapiteoelectric effect does not affect velocity
of ultrasound. For these reasons the frequencydetdrmined should be treated as only a
rough approximation. However, it indicates that sheuld look for the resonance in vicinity
of 200 kHz.

The experimental set-up is shown in Fig. 4.3. Théllagar (generator) is connected to
one of the discs that works as a transmitter armh&éochannel of the oscilloscope. The second
disc is connected to the second channel of thél@smpe and works as a receiver. Both discs
are placed against one of the bags with liquid.(#ig). The distancd can be varied.

! This draft solution is based on the camera-ready af the more detailed solution prepared by Dndrxej
Kotlicki and published in the proceedings [3]



A 4 P
AT 7
7777 T vy
1
Oscillator .
(Generator) o[ | Oscilloscope
b e o
Y2
77777 TIITT,
Fig. 4.3

Bag with liquid

Fig. 4.4

One searches for the resonance by slowly changamfréquency of the oscillator in the
range 100 — 1000 kHz and watching the signal oroiadloscope. In this way the students
could find a strong resonance at frequenicy &P{¥. Other resonance peaks could be
found at about 110 kHz and 670 kHz. They should hbgen neglected as they are
substantially weaker. (They correspond to some attogtes of vibrations.) Accuracy of these
measurements was 10 kHz (due to the width of then@nce and the accuracy of the scale on
the generator).

B. The ultrasonic waves pass through the liquid anckigge an electric signal in the
receiver. Using the same set-up (Fig. 4.3 and Welran measure dependence of the phase
shift between the signals at ¥nd Y, vs. distance between the piezoelectric didcat the
constant frequency found in poiit This phase shift i&\g = 27df /v, + ¢,, wherev, denotes
velocity of ultrasound in the liquidg, denotes a constant phase shift occurring when
ultrasound passes trough the bag walls (possibly)z&he graph representing dependence



d(Ag) should be a straight line. Its slope allows teed®inev, and its error. In general, the
measurements oh¢ are difficult for many reflections in the bag, whiperturb the signal.
One of the best ways is to measdrenly for A¢g =nn (n - integer) as such points can be
found rather easy. Many technical details concgymneasurements can be found in [3] (pp.
37 and 38).

The liquids given to the students were water andaglyg. In the standard solution the
author of the problem received the following values

The ratio of these values wds81+ 015.

The ultrasonic waves are partly reflected or scadtdy the walls of the bag. This effect
somewhat affects measurements of the phase shifinifimize its role one can measure the
phase shift (for a given distance) or distanceh@tsame phase shift) several times, each time
changing the shape of the bag. As regards errodetermination of velocities it is worth to
mention that the most important factor affectingnthwas the error in determination of the
frequency. This error, however, practically doesaftect the ratio of velocities.

Marking Scheme

Frequency estimation

1. Formula 1 point
2. Result (with units) 1 point
3. Method of experimental determining the resonaneguency 1 point
4. Result (if within 5% of standard value) 2 1S
5. Error 1 point
Measurements of velocities
1. Explanation of the method 2 points
2. Proper number of measurements in each series 3 points
3. Result for velocity in the first liquid (if withi®% of standard value) 2 points
4. Error of the above 1 point
5. Result for velocity in the second liquid (if withB% of standard value) 2 points
6. Error of the above 1 point
Ratio of velocities
1. Result (if within 3% of standard value) 2 kS|
2. Error of the above 1 point

Typical mistakes

The results of this problem were very good (mownth half of competitors obtained
more than 15 points). Nevertheless, many studemsuntered some difficulties in estimation
of the frequency. Some of them assumed presenoed#s at the flat surfaces of the discs
(this assumption is not adequate to the situatiom,accidentally gives proper formula). In
part B some students tried to find distances betweades and antinodes for ultrasonic
standing wave in the liquid. This approach gavedaksults as the pattern of standing waves
in the bag is very complicated and changes wheshhpe of the bag is changed.
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