Q1

Figure 1.1

A plane monochromatic light wave, wavelengthnd frequency, is incident normally on
two identical narrow slits, separated by a distahaes indicated in Figure 1.1. The light
wave emerging at each slit is given, at a distarioea directiory at timet, by

y =acosr( ft —x/ A)]
where the amplituda is the same for both waves. (Assuxie much larger thad).
(i) Show that the two waves observed at an afi¢iea normal to the slits, have a resultant

amplitude A which can be obtained by adding twames; each having magnitude and
each with an associated direction determined bykase of the light wave.

Verify geometrically, from the vector diagram, that

A=2acosf

where

/.
=—dsind
'8/1

(i) The double slit is replaced by a diffractigrating withN equally spaced slits, adjacent
slits being separated by a distadcéJse the vector method of adding amplitudes tavsho
that the vector amplitudes, each of magnitad®rm a part of a regular polygon with
vertices on a circle of radigiven by

a

R=——,
2sing

Deduce that the resultant amplitude is

asinNg

sing



and obtain the resultant phase difference relatiithat of the light from the slit at the edge
of the grating.

(iif) Sketch, in the same graph, 9Nf and (1/si) as a function off. On a separate graph
show how the intensity of the resultant wave vaaigs function of.

(iv) Determine the intensities of the principalansity maxima.

(v) Show that the number of principal maxima carmateed

tE

(vi) Show that two wavelengthisand + 3, wheredl << A, produce principal maxima with
an angular separation given by

_ nAA

= wheen=0, 1, £2...etc
d cosé

Calculate this angular separation for the sodiutim&s for which

A =5890nm, A+AA=5896nm, n=2, andd =12x107° m.

[reminder. cosA+cosB = 2co{ A; B].co{AéBﬂ
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2. Early this century a model of the earth was psagl in which it was assumed to be a sphere of
radiusR consisting of a homogeneous |sotr0f|c solid madhdhen to radiudx.. The core region
within radiusR; contained a liquid. Figure 2.
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Figure 2.1

The velocities of longitudinal and transverse s&swaves P and S waves respectively, are
constantVp, andV s within the mantle. In the core, longitudinal waves/e a constant velocity

Vep, < Vp, and transverse waves are not propagated.

An earthquake at E on the surface of the Earthymes seismic waves that travel through the Earth
and are observed by a surface observer who carpdes seismometer at any point X on the
Earth’s surface. The angular separation betweandeX, 2 given by

26 = Angle EOX

where O is the centre of the Earth.

(i) Show that the seismic waves that travel throtlghmantle in a straight line will arrive at Xaat
time t (the travel time after the earthquake),iieg by

t= 2Rsm6’, for @ > arcco%%},

v
wherev = vp for the P waves and= vs for the S waves.

(if) For some of the positions of X such that tleéssnic P waves arrive at the observer after two
refractions at the mantle-core interface. Drawghth of such a seismic P wave. Obtain a
relation betweem andi, the angle of incidence of the seismic P wavdathantle-core
interface, for P waves.



(iii) Using the data

R = 6370 km
Rc = 3470 km
Vep = 10.85kn st
ve¢ = 6.31kn st
Ve = 9.02km st

and the result obtained in (ii),draw a grapl¥@igainsti. Comment on the physical consequences
of the form of this graph for observers stationedifferent points on the Earth's surface.

Sketch the variation of the travel time taken by Ehand S waves as a functiorddbr 0< ¢

<90 degrees.

(iv) After an earthquake an observer measuresitie delay between the arrival of the S wave,
following the P wave, as 2 minutes 11 seconds. Dedle angular separation of the earthquake
from the observer using the data given in Sectiion (

(v) The observer in the previous measurement neticat some time after the arrival of the P and
S waves there are two further recordings on thens@mneter separated by a time interval of 6
minutes 37 seconds. Explain this result and veh#t it is indeed associated with the angular
separation determined in the previous section.
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Three particles, each of massare in equilibrium and joined by unstretched ressssprings, each
with Hooke’s Law spring constakt They are constrained to move in a circular patindicated in
Figure 3.1.
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Figure 3.1

(i) If each mass is displaced from equilibrium loyadl displacements;, u, andu; respectively,
write down the equation of motion for each mass.

(ii) Verify that the system has simple harmonicusioins of
the form

u, = a, cosat ,

with accelerations, (-w’u,) wherea, (n=123) are constant amplitudes, and, the angular
frequency, can have 3 possible values,

w,/3,w,/3and 0. wherea? =%.
(iif) The system of alternate springs and massestsnded tdN particles, each massis joined by
springs to its neighbouring masses. Initially tparggs are unstretched and in equilibrium. Write

down the equation of motion tdfenth massif = 1,2..N) in terms of its displacement and those of
the adjacent masses when the particles are dispfea® equilibrium.

u,(t) =a, sin[zn%T + ¢)) coswyt,

are oscillatory solutions whees=1, 2,.N,n=1, 2, .N and whereg is an arbitrary phase,
providing the angular frequencies are given by

W, = 2w, sin(iTj,
N

where a, (s=1.....N) are constant amplitudes independent.of

State the range of possible frequencies for a cbamaining an infinite number of masses.



(iv) Determine the ratio
un/un+1

for large N, in the two cases:
(a) low frequency solutions

(b)w=w

max?

wherew,, IS the maximum frequency solution.

Sketch typical graphs indicating the displacemeithie particles against particle number along
the chain at timé for cases (a) and (b).

(v) If one of the masses is replaced by a nmss< m estimate any majachange one would
expect to occur to the angular frequency distridouti

Describe qualitatively the form of the frequencgsppum one would predict for a diatomic chain
with alternate massas andm' on the basis of the previous result.

Reminder

sin(A+ B) =sin AcosB +cosAsinB

sinA+sinB = Zsin[A; BjCO{A; Bj

2sin®* A=1-cos2A



