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Abstract 
 

After a short introduction the problems of the 2nd and the 9th International Physics Olympiad, organized 
in Budapest, Hungary, 1968 and 1976, and their solutions are presented. 

 
 
 

Introduction 
 

 
Following the initiative of Dr. Waldemar Gorzkowski [1] I present the problems and 

solutions of the 2nd and the 9th International Physics Olympiad, organized by Hungary. I have 
used Prof. Rezs� Kunfalvi’s problem collection [2], its Hungarian version [3] and in the case 
of the 9th Olympiad the original Hungarian problem sheet given to the students (my own 
copy). Besides the digitalization of the text, the equations and the figures it has been made 
only small corrections where it was needed (type mistakes, small grammatical changes). I 
omitted old units, where both old and SI units were given, and converted them into SI units, 
where it was necessary. 

If we compare the problem sheets of the early Olympiads with the last ones, we can 
realize at once the difference in length. It is not so easy to judge the difficulty of the problems, 
but the solutions are surely much shorter. 

The problems of the 2nd Olympiad followed the more than hundred years tradition of 
physics competitions in Hungary. The tasks of the most important Hungarian theoretical 
physics competition (Eötvös Competition), for example, are always very short. Sometimes the 
solution is only a few lines, too, but to find the idea for this solution is rather difficult. 

Of the 9th Olympiad I have personal memories; I was the youngest member of the 
Hungarian team. The problems of this Olympiad were collected and partly invented by 
Miklós Vermes, a legendary and famous Hungarian secondary school physics teacher. In the 
first problem only the detailed investigation of the stability was unusual, in the second 
problem one could forget to subtract the work of the atmospheric pressure, but the fully 
“open” third problem was really unexpected for us. 

The experimental problem was difficult in the same way: in contrast to the Olympiads 
of today we got no instructions how to measure. (In the last years the only similarly open 
experimental problem was the investigation of “The magnetic puck” in Leicester, 2000, a 
really nice problem by Cyril Isenberg.) The challenge was not to perform many-many 
measurements in a short time, but to find out what to measure and how to do it. 

Of course, the evaluating of such open problems is very difficult, especially for several 
hundred students. But in the 9th Olympiad, for example, only ten countries participated and 
the same person could read, compare, grade and mark all of the solutions. 
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2nd IPhO (Budapest, 1968) 
 
 
Theoretical problems 
 
Problem 1 
 

On an inclined plane of 30° a block, mass m2 = 4 kg, is joined by a light cord to a solid 
cylinder, mass m1 = 8 kg, radius r = 5 cm (Fig. 1). Find the acceleration if the bodies are 
released. The coefficient of friction between the block and the inclined plane µ = 0.2. Friction 
at the bearing and rolling friction are negligible. 
 

 
 
Solution 
 

 If the cord is stressed the cylinder and the block are moving with the same 
acceleration a. Let F be the tension in the cord, S the frictional force between the cylinder and 
the inclined plane (Fig. 2). The angular acceleration of the cylinder is a/r. The net force 
causing the acceleration of the block: 
 

  Fgmgmam +−= αµα cossin 222 , 
 

and the net force causing the acceleration of the cylinder: 
 

  FSgmam −−= αsin11 . 
 

The equation of motion for the rotation of the cylinder: 
 

  I
r

a
rS ⋅= . 

 

(I is the moment of inertia of the cylinder, S⋅r is the torque of the frictional force.) 
Solving the system of equations we get: 
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The moment of inertia of a solid cylinder is 
2

2
1rm

I = . Using the given numerical values: 
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Discussion (See Fig. 3.) 
 

 The condition for the system to start moving is a > 0. Inserting a = 0 into (1) we 
obtain the limit for angle α1: 
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For the cylinder separately 01 =α , and for the block separately °== − 31.11tan 1
1 µα . 

 If the cord is not stretched the bodies move separately. We obtain the limit by 
inserting F = 0 into (3): 
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 The condition for the cylinder to 
slip is that the value of S (calculated from 
(2) taking the same coefficient of friction) 
exceeds the value of αµ cos1gm . This gives 

the same value for α3 as we had for α2. The 
acceleration of the centers of the cylinder 
and the block is the same: 

( )αµα cossin −g , the frictional force at the 

bottom of the cylinder is αµ cos1gm , the 
peripheral acceleration of the cylinder is 

αµ cos
2

1 g
I

rm ⋅⋅ . 

 
Problem 2 
 

 There are 300 cm3 toluene of C0°  temperature in a glass and 110 cm3 toluene of 
C100°  temperature in another glass. (The sum of the volumes is 410 cm3.) Find the final 

volume after the two liquids are mixed. The coefficient of volume expansion of toluene 

( ) 1C001.0 −°=β . Neglect the loss of heat. 
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Solution 
 

 If the volume at temperature t1 is V1, then the volume at temperature C0°  is 
( )1110 1 tVV β+= . In the same way if the volume at t2 temperature is V2, at C0°  we have 

( )2220 1 tVV β+= . Furthermore if the density of the liquid at C0°  is d, then the masses are 

dVm 101 =  and dVm 202 = , respectively. After mixing the liquids the temperature is 
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The volumes at this temperature are ( )tV β+110  and ( )tV β+120 . 

The sum of the volumes after mixing: 
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The sum of the volumes is constant. In our case it is 410 cm3. The result is valid for any 
number of quantities of toluene, as the mixing can be done successively adding always one 
more glass of liquid to the mixture. 
 
Problem 3 
 

 Parallel light rays are falling on the plane surface of a semi-cylinder made of glass, at 
an angle of 45°, in such a plane which is perpendicular to the axis of the semi-cylinder 

(Fig. 4). (Index of refraction is 2 .) Where are the rays emerging out of the cylindrical 
surface? 

 
 
Solution 
 

 Let us use angle ϕ to describe the position of the rays in the glass (Fig. 5). According 

to the law of refraction 2sin45sin =° β , 5.0sin =β , °= 30β . The refracted angle is 30° 
for all of the incoming rays. We have to investigate what happens if ϕ changes from 0° to 
180°. 
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 It is easy to see that ϕ  can not be less than 60° ( °=∠ 60AOB ). The critical angle is 

given by 221sin == ncritβ ; hence °= 45critβ . In the case of total internal reflection 

°=∠ 45ACO , hence °=°−°−°= 754560180ϕ . If ϕ  is more than 75° the rays can emerge 
the cylinder. Increasing the angle we reach the critical angle again if °=∠ 45OED . Thus the 
rays are leaving the glass cylinder if: 
  °<<° 16575 ϕ , 

CE, arc of the emerging rays, subtends a central angle of 90°. 
 
Experimental problem 
 
 Three closed boxes (black boxes) with two plug sockets on each are present for 
investigation. The participants have to find out, without opening the boxes, what kind of 
elements are in them and measure their characteristic properties. AC and DC meters (their 
internal resistance and accuracy are given) and AC (5O Hz) and DC sources are put at the 
participants’ disposal. 
 
Solution 
 
 No voltage is observed at any of the plug sockets therefore none of the boxes contains 
a source. 
 Measuring the resistances using first AC then DC, one of the boxes gives the same 
result. Conclusion: the box contains a simple resistor. Its resistance is determined by 
measurement. 
 One of the boxes has a very great resistance for DC but conducts AC well. It contains 

a capacitor, the value can be computed as 
CX

C
ω

1= . 

 The third box conducts both AC and DC, its resistance for AC is greater. It contains a 
resistor and an inductor connected in series. The values of the resistance and the inductance 
can be computed from the measurements. 
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9th IPhO (Budapest, 1976) 
 
 
Theoretical problems 
 
Problem 1 
 

A hollow sphere of radius R = 0.5 m rotates about a vertical axis through its centre 
with an angular velocity of ω  = 5 s-1. Inside the sphere a small block is moving together with 
the sphere at the height of R/2 (Fig. 6). (g = 10 m/s2.) 

a) What should be at least the coefficient of friction to fulfill this condition? 
b) Find the minimal coefficient of friction also for the case of ω  = 8 s-1. 
c) Investigate the problem of stability in both cases, 

α) for a small change of the position of the block, 
β) for a small change of the angular velocity of the sphere. 
 

 
 

Solution 
 

a) The block moves along a horizontal circle of radius αsinR . The net force acting on 
the block is pointed to the centre of this circle (Fig. 7). The vector sum of the normal force 
exerted by the wall N, the frictional force S and the weight mg is equal to the resultant: 

αω sin2Rm . 
 

The connections between the horizontal and vertical components: 
 

  αααω cossinsin2 SNRm −= , 
 

  αα sincos SNmg += . 
 

The solution of the system of equations: 
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The block does not slip down if 
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In this case there must be at least this friction to prevent slipping, i.e. sliding down. 
 

b) If on the other hand 1
cos2

>
g

R αω
 some 

friction is necessary to prevent the block to slip 
upwards. αω sin2Rm  must be equal to the resultant 
of forces S, N and mg. Condition for the minimal 
coefficient of friction is (Fig. 8): 
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c) We have to investigate µa and µb as functions of α and ω in the cases a) and b) (see  

Fig. 9/a and 9/b): 
 

 
 

In case a): if the block slips upwards, it comes back; if it slips down it does not return. 
If ω  increases, the block remains in equilibrium, if ω  decreases it slips downwards. 

In case b): if the block slips upwards it stays there; if the block slips downwards it 
returns. If ω increases the block climbs upwards-, if ω decreases the block remains in 
equilibrium. 
 
Problem 2 

 

The walls of a cylinder of base 1 dm2, the piston and the inner dividing wall are 
perfect heat insulators (Fig. 10). The valve in the dividing wall opens if the pressure on the 
right side is greater than on the left side. Initially there is 12 g helium in the left side and 2 g 
helium in the right side. The lengths of both sides are 11.2 dm each and the temperature is 
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C0° . Outside we have a pressure of 100 kPa. 
The specific heat at constant volume is 
cv = 3.15 J/gK, at constant pressure it is 
cp = 5.25 J/gK. The piston is pushed slowly 
towards the dividing wall. When the valve 
opens we stop then continue pushing slowly 
until the wall is reached. Find the work done 
on the piston by us. 
 
Solution 
 

The volume of 4 g helium at C0°  temperature and a pressure of 100 kPa is 22.4 dm3 
(molar volume). It follows that initially the pressure on the left hand side is 600 kPa, on the 
right hand side 100 kPa. Therefore the valve is closed. 

An adiabatic compression happens until the pressure in the right side reaches 600 kPa 
(κ = 5/3). 
 

  3535 6002.11100 V⋅=⋅ , 
 

hence the volume on the right side (when the valve opens): 
 

  V = 3.82 dm3. 
 

From the ideal gas equation the temperature is on the right side at this point 
 

  K5521 ==
nR

pV
T . 

 

During this phase the whole work performed increases the internal energy of the gas: 
 

  W1 = (3.15 J/gK) ⋅ (2 g) ⋅ (552 K – 273 K) = 1760 J. 
 

Next the valve opens, the piston is arrested. The temperature after the mixing has been 
completed: 
 

  K313
14

552227312
2 =⋅+⋅=T . 

 

During this phase there is no change in the energy, no work done on the piston. 
An adiabatic compression follows from 11.2 + 3.82 = 15.02 dm3 to 11.2 dm3: 

 

  32
3

32 2.1102.15313 ⋅=⋅ T , 
 

hence 
 

  T3 = 381 K. 
The whole work done increases the energy of the gas: 
 

  W3 = (3.15 J/gK) ⋅ (14 g) ⋅ (381 K – 313 K) = 3000 J. 
 

The total work done: 
 

  Wtotal = W1 + W3 = 4760 J. 
 

The work done by the outside atmospheric pressure should be subtracted: 
 

  Watm = 100 kPa ⋅ 11.2 dm3 = 1120 J. 
 

The work done on the piston by us: 
 

  W = Wtotal – Watm = 3640 J. 

11.2 dm 11.2 dm 

1 dm2 

Figure 10 
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Problem 3 
 

Somewhere in a glass sphere there is an air bubble. Describe methods how to 
determine the diameter of the bubble without damaging the sphere. 
 
Solution 
 

We can not rely on any value about the density of the glass. It is quite uncertain. The 
index of refraction can be determined using a light beam which does not touch the bubble. 
Another method consists of immersing the sphere into a liquid of same refraction index: its 
surface becomes invisible. 

A great number of methods can be found. 
We can start by determining the axis, the line which joins the centers of the sphere and 

the bubble. The easiest way is to use the “tumbler-over” method. If the sphere is placed on a 
horizontal plane the axis takes up a vertical position. The image of the bubble, seen from both 
directions along the axis, is a circle. 

If the sphere is immersed in a liquid of same index 
of refraction the spherical bubble is practically inside a 
parallel plate (Fig. 11). Its boundaries can be determined 
either by a micrometer or using parallel light beams. 

Along the axis we have a lens system consisting, of 
two thick negative lenses. The diameter of the bubble can 
be determined by several measurements and complicated 
calculations. 

If the index of refraction of the glass is known we can fit a plano-concave lens of same 
index of refraction to the sphere at the end of the axis (Fig. 12). As ABCD forms a parallel 
plate the diameter of the bubble can be measured using parallel light beams. 

 

 
 

Focusing a light beam on point A of the surface of the sphere (Fig. 13) we get a 
diverging beam from point A inside the sphere. The rays strike the surface at the other side 
and illuminate a cap. Measuring the spherical cap we get angle ϕ. Angle ψ can be obtained in 
a similar way at point B. From 
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 The diameter of the bubble can be determined also by the help of X-rays. X-rays are 
not refracted by glass. They will cast shadows indicating the structure of the body, in our case 
the position and diameter of the bubble. 

We can also determine the moment of inertia with respect to the axis and thus the 
diameter of the bubble. 
 
Experimental problem 
 
The whole text given to the students: 

 
At the workplace there are beyond other devices a test tube with 12 V electrical 

heating, a liquid with known specific heat (c0 = 2.1 J/g°C) and an X material with unknown 
thermal properties. The X material is insoluble in the liquid. 

Examine the thermal properties of the X crystal material between room temperature 
and 70 °C. Determine the thermal data of the X material. Tabulate and plot the measured data. 

(You can use only the devices and materials prepared on the table. The damaged 
devices and the used up materials are not replaceable.) 
 
Solution 
 

Heating first the liquid then the liquid and the crystalline substance together two time-
temperature graphs can be plotted. From the graphs specific heat, melting point and heat of 
fusion can be easily obtained. 
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