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Abstract

After a short introduction the problems of tHE &nd the 8 International Physics Olympiad, organized
in Budapest, Hungary, 1968 and 1976, and theittisolsi are presented.

Introduction

Following the initiative of Dr. Waldemar Gorzkowsfdi] | present the problems and
solutions of the # and the ¥ International Physics Olympiad, organized by Huggahave
used Prof. Re#sKunfalvi’'s problem collection [2], its Hungariaression [3] and in the case
of the 9" Olympiad the original Hungarian problem sheet gite the students (my own
copy). Besides the digitalization of the text, #rgpuations and the figures it has been made
only small corrections where it was needed (typstakes, small grammatical changes). |
omitted old units, where both old and Sl units wgikeen, and converted them into SI units,
where it was necessary.

If we compare the problem sheets of the early Olgahgpwith the last ones, we can
realize at once the difference in length. It is smieasy to judge the difficulty of the problems,
but the solutions are surely much shorter.

The problems of the"2 Olympiad followed the more than hundred yearsitiG of
physics competitions in Hungary. The tasks of thestmimportant Hungarian theoretical
physics competition (E6tvdés Competition), for exdenpare always very short. Sometimes the
solution is only a few lines, too, but to find tidea for this solution is rather difficult.

Of the 9" Olympiad | have personal memories; | was the yeshgnember of the
Hungarian team. The problems of this Olympiad weodlected and partly invented by
Miklos Vermes, a legendary and famous Hungariaorsdary school physics teacher. In the
first problem only the detailed investigation ofetlstability was unusual, in the second
problem one could forget to subtract the work of #tmospheric pressure, but the fully
“open” third problem was really unexpected for us.

The experimental problem was difficult in the sawagy: in contrast to the Olympiads
of today we got no instructions how to measure.tii@ last years the only similarly open
experimental problem was the investigation of “Thagnetic puck” in Leicester, 2000, a
really nice problem by Cyril Isenberg.) The chafjlenwas not to perform many-many
measurements in a short time, but to find out whaheasure and how to do it.

Of course, the evaluating of such open problemerig difficult, especially for several
hundred students. But in th& @lympiad, for example, only ten countries partitad and
the same person could read, compare, grade andathafikthe solutions.



2" IPhO (Budapest, 1968)

Theoretical problems

Problem 1

On an inclined plane of 30° a block, mass= 4 kg, is joined by a light cord to a solid
cylinder, massm = 8 kg, radiug = 5 cm Fig. 1). Find the acceleration if the bodies are
released. The coefficient of friction between thack and the inclined plang = 0.2. Friction
at the bearing and rolling friction are negligible.
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Solution

If the cord is stressed the cylinder and the bleck moving with the same
acceleratiora. LetF be the tension in the corfthe frictional force between the cylinder and
the inclined planeKig. 2). The angular acceleration of the cylinderais. The net force
causing the acceleration of the block:

m,a=m,gsing — um,gcosa +F ,
and the net force causing the acceleration of yheder:
ma=mgsina-S-F .

The equation of motion for the rotation of the oyler:
Sr :EEII .
r

(I is the moment of inertia of the cylind&tl is the torque of the frictional force.)
Solving the system of equations we get:
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The moment of inertia of a solid cylinderlis mlzr . Using the given numerical values:
a=g m, +m,)sina - pm, cosa _ 0.33179 =3.25m/s?
15m +m,
S= mg E(ml * mZ)Slna _ MM, COST 13.01N,
2 15m +m,

F=mg dl.S,ucosa ~ 05sina)m, _ 0.192N

15m +m,

Discussion(SeeFig. 3.)

The condition for the system to start movingais> 0. Insertinga = 0 into (1) we
obtain the limit for angler:

tana, = 02 =H 00667, a, =381

For the cylinder separately, =0, and for the block separatety =tan™ ¢ =1131°.
If the cord is not stretched the bodies move s#pbt. We obtain the limit by
insertingF = 0 into (3):

2

tana, = y[ﬁh%} =34=06, a,=3096".

The condition for the cylinder to Br,a F, S(N)
slip is that the value o8 (calculated from g
(2) taking the same coefficient of friction) T

exceeds the value gim gcosa . This gives
the same value fam; as we had fon,. The
acceleration of the centers of the cylinder
and the block is the same:
g(sina - pcosa), the frictional force at the
bottom of the cylinder isymgcosa, the
peripheral acceleration of the cylinder is

2
r
,Udnll_@cosa- Figure 3

Problem 2

There are 300 chtoluene of 0°C temperature in a glass and 110%dwluene of
100°C temperature in another glass. (The sum of themetuis 410 cfh) Find the final
volume after the two liquids are mixed. The coédit of volume expansion of toluene

B=0.001°C)™. Neglect the loss of heat.



Solution

If the volume at temperatur is Vi, then the volume at temperatuf® i€
V,, =V,/(1+Bt,). In the same way if the volume &t temperature i8/,, at 0° C we have
V., =V2/(1+ ,Btz). Furthermore if the density of the liquid @t i€d, then the masses are

m, =V,,d andm, =V,.d , respectively. After mixing the liquids the temaiere is
t= rT‘].l.til. + m2t2 )
m, +m,
The volumes at this temperature &g{l+ Bt) andV,,(1+ St).
The sum of the volumes after mixing:
V10(1+ ﬂt)+v20(1+ IBt) =VlO +V20 + /G(Vlo +V20)t =
=V +Vy +/8drh L dntl Tl -
d m +m,
t t
:V10 +V20 +ﬁ(rr::1] : + mé 2) :V10 +:3\/10t1 +V20 +:8v20t2 =
=VlO(:]'-'- ﬂtl) +V20(1+ IBtZ) =Vl +V2

The sum of the volumes is constant. In our case 410 cni. The result is valid for any
number of quantities of toluene, as the mixing bandone successively adding always one
more glass of liquid to the mixture.

Problem 3

Parallel light rays are falling on the plane surface of a seylirder made of glass, at
an angle of 45 in such a plane which is perpendicular to thes afi the semi-cylinder

(Fig. 4). (Index of refraction isv/2 .) Where are the rays emerging out of the cyliradric
surface?
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Solution

Let us use anglg to describe the position of the rays in the gl&sg.(5). According
to the law of refractiorsind5°/sing=+/2, sin=05, f=30. The refracted angle is 30

for all of the incoming rays. We have to investggathat happens i$ changes from Oto
180.



It is easy to see tha@t can not be less than 0AOBL =60°). The critical angle is
given by sing,, =1/n=+/2/2; hence B.. =45°. In the case of total internal reflection

ACOL[ =45°, henceg =180 -60°-45°=75°. If ¢ is more than 75the rays can emerge

the cylinder. Increasing the angle we reach thigcatiangle again fOED[ =45°. Thus the
rays are leaving the glass cylinder if:
75° <9 <165,

CE, arc of the emerging rays, subtends a centgiéanf 9C.

Experimental problem

Three closed boxes (black boxes) with two plugkets on each are present for
investigation. The participants have to find outtheut opening the boxes, what kind of
elements are in them and measure their charadatepisiperties. AC and DC meters (their
internal resistance and accuracy are given) and & Hz) and DC sources are put at the
participants’ disposal.

Solution

No voltage is observed at any of the plug socttedsefore none of the boxes contains
a source.

Measuring the resistances using first AC then D@ of the boxes gives the same
result. Conclusion: the box contains a simple tesislts resistance is determined by
measurement.

One of the boxes has a very great resistance @bt conducts AC well. It contains

a capacitor, the value can be computed:as%.
w C
The third box conducts both AC and DC, its resistafor AC is greater. It contains a

resistor and an inductor connected in series. Hbeeg of the resistance and the inductance
can be computed from the measurements.



9" IPhO (Budapest, 1976)

Theoretical problems

Problem 1

A hollow sphere of radiuR = 0.5 m rotates about a vertical axis throughcéstre
with an angular velocity ofv = 5 §*. Inside the sphere a small block is moving togettién
the sphere at the height®R (Fig. 6). (g = 10 m/3.)

a) What should be at least the coefficient of iictto fulfill this condition?

b) Find the minimal coefficient of friction alsorfthe case otv = 8 s,

c) Investigate the problem of stability in both ess

a) for a small change of the position of the block,
) for a small change of the angular velocity of sphere.

mu?Rsina

Figure 6 Figure 7

Solution

a) The block moves along a horizontal circle ofiwadRsina . The net force acting on
the block is pointed to the centre of this cirdfkeg( 7). The vector sum of the normal force
exerted by the walN, the frictional forceS and the weighing is equal to the resultant:

maw’Rsing .

The connections between the horizontal and verticalponents:
ma’Rsina = Nsina - Scosa
mg = N cosa + Ssina .

The solution of the system of equations:

szcosaj

S=mg sina(l—

B ( a)stinzaj
N =mg| cosag + — |.



The block does not slip down if

1 w’Rcosa
s _ g 33
>—=sina 3 = =0.2259
Ha N o’Rsina 23
cosa +T

In this case there must be at least this frictoprevent slipping, i.e. sliding down.

b) If on the other hanm >1 some
g

friction is necessary to prevent the block to slip
upwards.maw’Rsina must be equal to the resultant
of forcesS N and mg. Condition for the minimal
coefficient of friction is Fig. 8):

w’Rcosa 1 mu’Rsina
S_ . g

>—=siha 4 =
= W*Rsin’ a

cosg+———— — |

g

_3V3 _
T og 0.1792 Figure8

c) We haveo investigateu, and 4, as functions otr and win the cases a) and b) (see
Fig. 9/a and9/b):

Figure 9/a Figure 9/b

In case a): if the block slips upwards, it comeskb it slips down it does not return.
If w increases, the block remains in equilibriumpifdecreases it slips downwards.

In case b): if the block slips upwards it staysréhef the block slips downwards it
returns. If w increases the block climbs upwardg w decreases the block remains in
equilibrium.

Problem 2

The walls of a cylinder of base 1 @&nthe piston and the inner dividing wall are
perfect heat insulator$ig. 10). The valve in the dividing wall opens if the pase on the
right side is greater than on the left side. IHifizthere is 12 g helium in the left side and 2 g
helium in the right side. The lengths of both sides 11.2 dm each and the temperature is



0°C. Outside we have a pressure of 100 kPa. 11.2 dm 11.2 dm

The specific heat at constant volume is S
c, = 3.15J/gK, at constant pressure it is ?
Cp, = 5.25 J/gK. The piston is pushed slowly 1dnff
towards the dividing wall. When the valve é
'’

opens we stop then continue pushing slowly
until the wall is reached. Find the work done

on the piston by us. Figure 10

Solution

The volume of 4y helium at0° Ctemperature and a pressure of 100 kPa is 22°%4 dm
(molar volume). It follows that initially the prag® on the left hand side is 600 kPa, on the
right hand side 100 kPa. Therefore the valve isedo

An adiabatic compression happens until the pressutee right side reaches 600 kPa
(k = 5/3).

100111.2%° = 6001V %2,
hence the volume on the right side (when the vapens):
V =3.82 dm.
From the ideal gas equation the temperature if®mnight side at this point
T =P —smx.
nR

During this phase the whole work performed incredkeinternal energy of the gas:
Wi = (3.15 J/gK)I2 g) (552 K — 273 K) = 1760 J.

Next the valve opens, thmston is arrested. Themperature after the mixifgas been

completed:
T,= 12[27?; 2[552: 31K

During this phase there is no change in the energyyork done on the piston.
An adiabatic compression follows from 11.2 + 3.825:02 dnito 11.2 dnf:

3131502%° =T, 11.2%°,

hence

T3 =381 K.
The whole work done increases the energy of the gas

W; = (3.15 J/gK)1(14 g)[1(381 K — 313 K) = 3000 J.
The total work done:
Wiotal = W1 + Wz = 4760 J.
The work done by the outside atmospheric pressweld be subtracted:
Watm = 100 kPa111.2 dnf = 1120 J.
The work done on the piston by us:
W = Wiotal — Watm = 3640 J



Problem 3

Somewhere in a glass sphere there is an air bulbi@ecribe methods how to
determine the diameter of the bubble without danm@gthie sphere.

Solution

We can not rely on any value about the densityhefdlass. It is quite uncertain. The
index of refraction can be determined using a lighéam which does not touch the bubble.
Another method consists of immersing the sphere @ntiquid of same refraction index: its
surface becomes invisible.

A great number of methods can be found.

We can start by determining the axis, the line Whans the centers of the sphere and
the bubble. The easiest way is to use the “tuniler’ method. If the sphere is placed on a
horizontal plane the axis takes up a vertical pmsitThe image of the bubble, seen from both
directions along the axis, is a circle.

If the sphere is immersed in a liquid of same index
of refraction the spherical bubble is practicalhside a
parallel plate Fig. 11). Its boundaries can be determined S -
either by a micrometer or using parallel light beam .'_.'_.'_.'3_2_

Along the axis we have a lens system consistihg ’
two thick negative lenses. The diameter of the bubhn
be determined by several measurements and conggalicat Figurell
calculations.

If the index of refraction of the glass is known @am fit a plano-concave lens of same
index of refraction to the sphere at the end ofakis Fig. 12). As ABCD forms a parallel
plate the diameter of the bubble can be measuiiad parallel light beams.

Pt

Figurel2 Figurel3

Focusing a light beam on point A of the surfacetled sphereRig. 13) we get a
diverging beam from point A inside the sphere. Téngs strike the surface at the other side
and illuminate a cap. Measuring the spherical caget antp ¢. Angle ¢ can be obtained in
a similar way at point B. From

) r . r
sing = andsing =———
¢ R+d Y

R-d
we have

[ = ZRG.Sim//Sir.W) Cd= R@?nw —sin¢ '
sing +sing siny +sing



The diameter of the bubble can be determined &siine help of X-rays. X-rays are
not refracted by glass. They will cast shadowsaatiing the structure of the body, in our case
the position and diameter of the bubble.

We can also determine the moment of inertia wigpeet to the axis and thus the
diameter of the bubble.

Experimental problem

The whole text given to the students:

At the workplace there are beyond other devicessa tube with 12 V electrical
heating, a liquid with known specific heat £ 2.1 J/§C) and an X material with unknown
thermal properties. The X material is insolubleha liquid.

Examine the thermal properties of the X crystalenat between room temperature
and 70°C. Determine the thermal data of the X materiabulate and plot the measured data.

(You can use only the devices and materials preparethe table. The damaged
devices and the used up materials are not replecgab

Solution

Heating first the liquid then the liquid and thestalline substance together two time-
temperature graphs can be plotted. From the grapésific heat, melting point and heat of
fusion can be easily obtained.
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