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Abstract

The article contains the competition problems gia¢rthe 7th International Physics
Olympiad (Warsaw, 1974) and their solutions.

Introduction

The 7" International Physics Olympiad (Warsaw, 1974) thessecond one organized
in Poland. It took place after a one-year orgaiopal gap, as no country was able to
organize the competition in 1973.

The original English version of the problems of #{EIPhO has not been preserved.
We would like to remind that the permanent Seciatarf the IPhOs was established only in
1983; previously the Olympic materials had beerectéd by individual people in their
private archives and, in general, are not compl&mglish texts of the problems and
simplified solutions are available in the book by Runfalvi [1]. Unfortunately, they are
somewhat deformed as compared to the originaldufately, we have very precise Polish
texts. Also the full solutions in Polish are avhl&a This article is based on the books [2, 3]
and article [4].

The competition problems were prepared especialtytfie ' IPhO by Andrzej
Szymacha (theoretical problems) and Jerzy Langgeanental problem).

THEORETICAL PROBLEMS
Problem 1

A hydrogen atom in the ground state, moving witlogigy v, collides with another
hydrogen atom in the ground state at rest. UsiagBibhr model find the smallest velocity

of the atom below which the collision must be etast

At velocity v, the collision may be inelastic and the collidintbras may emit

electromagnetic radiation. Estimate the differeatdérequencies of the radiation emitted in
the direction of the initial velocity of the hydreiy atom and in the opposite direction as a
fraction (expressed in percents) of their arithmetean value.

Data:

me'

E = =13.6eV =2.18[18" J; (ionization energy of hydrogen atom)

Lo2n?

m, = 167007 kg; (mass of hydrogen atom)
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(m - mass of electrong - electric charge of electrork;- Planck constant; numerical
values of these quantities are not necessary.)

Solution

According to the Bohr model the energy levelshaf hydrogen atom are given by the
formula:

Ei
En = _F ,
wheren=1, 2, 3, ... The ground state corresponds1tol, while the lowest excited state
corresponds ton = 2Thus, the smallest energy necessary for exaitatidghe hydrogen atom
is:

AE=E,-E =E(1-7)=3E.

During an inelastic collision a part of kinetic ege of the colliding particles is
converted into their internal energy. The intereraérgy of the system of two hydrogen atoms
considered in the problem cannot be changed bythlessAE . It means that if the kinetic
energy of the colliding atoms with respect to the#nter of mass is less th&k, then the
collision must be an elastic one. The value/pttan be found by considering the critical case,
when the kinetic energy of the colliding atoms ga@ to the smallest energy of excitation.
With respect to the center of mass the atoms mowpposite direction with velocitiesyv, .
Thus

and
V, = — (= 626010" m/s).
m

Consider the case when=v,. The collision may be elastic or inelastic. Whee t

collision is elastic the atoms remain in their grdstates and do not emit radiation. Radiation
is possible only when the collision is inelastict €éurse, only the atom excited in the
collision can emit the radiation. In principle, treiation can be emitted in any direction, but
according to the text of the problem we have tosaer radiation emitted in the direction of
the initial velocity and in the opposite directionly. After the inelastic collision both atom
are moving (in the laboratory system) with the samlecities equal ta;v,. Let f denotes
the frequency of radiation emitted by the hydrogéom in the mass center (i.e. at rest).

Because of the Doppler effect, in the laboratorgtey this frequency is observed a&s (
denotes the velocity of light):



1
a) f1:(1+2—vojf - for radiation emitted in the direction of theitiml velocity of the
c

hydrogen atom,

1
b) f, :(1—2—\/0jf - for radiation emitted in opposite direction.
c
The arithmetic mean value of these frequenciegusleof . Thus the required ratio is
St 20 20107 %).

In the above solution we took into account thgt<<c. Otherwise it would be

necessary to use relativistic formulae for the Deppffect. Also we neglected the recoil of
atom(s) in the emission process. One should ndtiaefor the visible radiation or radiation
not too far from the visible range the recoil candmange significantly the numerical results

for the critical velocityv, and the ratioATf. The recoil is important for high-energy quanta,

but it is not this case.
The solutions were marked according to the follgxscheme (draft):

1. Energy of excitation up to 3 points

2. Correct description of the physical processes uppoints

3. Doppler effect up to 3 points
Problem 2

Consider a parallel, transparent plate of thickmesd=ig. 1. Its refraction index varies

as
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Fig. 1



A light beam enters from the air perpendicularlytte plate at the point A{ = 0) and
emerges from it at the point B at an angle

1. Find the refraction index; at the point B.
2. Find x; (i.e. value ofx at the point B)
3. Find the thicknesd of the plate

Data:
N, =12; R=13cm; a=30.

Solution

ny 1)) N3

Fig. 2

Consider a light ray passing through a system afalfel plates with different
refractive indexes — Fig. 2. From the Snell lawhage

sing, _n

sing, n,
n,sinB, =n,;sing,.
In the same way we get
n;sing; =n,sing,, etc.

Thus, in general:
n,sinf, = const.

This relation does not involve plates thicknesstheir number. So, we may make use
of it also in case of continuous dependence of¢hactive index in one direction (in our case
in thex direction).



Consider the situation shown in Fig. 3.

Fig. 3

At the point A the anglgB, =90°. The refractive index at this pointng. Thus, we have

n,sing, =ngsing;g,
Ny, =NgSing;.

Additionally, from the Snell law applied to the r&ftion at the point B, we have

sina _
sin@0°-45,)
Therefore
sina =ng cospB, = nB\/l—sin2 Be = \/né —-(ngsing,)? = \/né -n
and finally
Numerically

2 2
SEERE
10 10

The value ofx; can be found from the dependencéx giyen in the text of the
problem. We have



n
Ny =n(Xg) = (;( ,
1-%e
R

Xg = R(l—%j,
B

X; =1 cm.

Numerically

The answer to the third question requires detertioimaof the trajectory of the light
ray. According to considerations described at thgirming of the solution we may write (see
Fig. 4):

n(x)sinB(x) =n,.

Thus
n, _ R-X

sinfB(x) =

n(x) R

R
Fig. 4

Consider the direction of the ray crossing a p@non the circle with radiu®k and
center in point O as shown in Fig. 4. We see that

sin0J coc:% =sin A(x) .

Therefore, the anglé] COC' must be equal to the angl#x formed at the point C by the
light ray and CC'. It means that at the point Crdnemust be tangent to the circle. Moreover,
the ray that is tangent to the circle at some paoinst be tangent also at farther points.
Therefore, the ray cannot leave the circle (as lasagit is inside the plate)! But at the
beginning the ray (at the point A) is tangent te tircle. Thus, the ray must propagate along
the circle shown in Fig. 4 until reaching point Bave it leaves the plate.

Already we know that AB = 1 cm. Thus, B'B = 12 @and from the rectangular
triangle BB'O we get



d=B'O=+13-12°cm =5cm.

The shape of the trajectory(x cpan be determined also by using more sophisticated
calculations. KnowingB(x we find tg S(x):

R-x

JRE-(R-x)?

But tg £S(x) is the derivative ofy(x .)So, we have

tg B(x) =

dy___ Rox :i( RZ—(R—X)Z).
dx Rz—(r—x)z dx

Thus

y=4R*-(R-x)? +const

Value ofconstcan be found from the condition
y(0)=0.
Finally:

It means that the ray moves in the plate alongécctrcle as found previously.

<
>

Fig. 5

Now we will present yet another, already the thimé&thod of proving that the light in
the plate must move along the circle.



We draw a number of straight lines (inside thag)lalose to each other and passing
trough the pointR,0) - Fig. 5. From the formula given in the texttbé problem it follows
that the refraction index on each of these linaavsrsely proportional to the distance to the
point (R,0). Now we draw several arcs with the centeRaQ)( It is obvious that the geometric
length of each arc between two lines is proporlitméhe distance to the poiriR,Q).

It follows from the above that the optical pathpi@duct of geometric length and
refractive index) along each arc between the twesli(close to each other) is the same for all
the arcs.

Assume that at +-certain momeinthe wave front reached one of the lines, e.g. the
line marked with a black dot in Fig. 5. According the Huygens principle, the secondary
sources on this line emit secondary waves. Theielepe forms the wave front of the real
wave at some timd + At. The wave fronts of secondary waves, shown in Bighave
different geometric radii, but - in view of our preus considerations - their optical radii are
exactly the same. It means that at the timeAt the new wave front will correspond to one
of the lines passing trougR,Q). At the beginning the wave front of the liglatirecided with
thex axis, it means that inside the plate the light mibve along the circle with center at the
point R,0).

The solutions were marked according to the follgascheme (draft):

1. Proof of the relatiomsin 8 = const up to 2 points
2. Correct description of refraction at points A and B up to 2 points
3. Calculation ofx, up to 1 point
4. Calculation ofd up to 5 points
Problem 3

A scientific expedition stayed on an uninhabitesfand. The members of the
expedition had had some sources of energy, but aftme time these sources exhausted.
Then they decided to construct an alternative gneoyirce. Unfortunately, the island was
very quiet: there were no winds, clouds uniformbwvered the sky, the air pressure was
constant and the temperatures of air and watdrarséa were the same during day and night.
Fortunately, they found a source of chemically redugas outgoing very slowly from a
cavity. The pressure and temperature of the gasexaetly the same as the pressure and
temperature of the atmosphere.

The expedition had, however, certain membranessiequipment. One of them was
ideally transparent for gas and ideally non-transpafor air. Another one had an opposite
property: it was ideally transparent for air andallly non-transparent for gas. The members
of the expedition had materials and tools thatvadd them to make different mechanical
devices such as cylinders with pistons, valves Etey decided to construct an engine by
using the gas from the cavity.

Show that there is no theoretical limit on the powafean ideal engine that uses the gas
and the membranes considered above.

Solution



Let us construct the device shown in Fig. 6.dBnotes the membrane transparent for
the gas from the cavity, but non-transparent ferdh, while B denotes the membrane with
opposite property: it is transparent for the airr fon-transparent for the gas.

Initially the valve Z is open and the valve,4s closed. In the initial situation, when
we keep the piston at rest, the pressure undgishen is equal top, + p, due to the Dalton
law. LetV, denotes an initial volume of the gas (at pressyje

Now we close the valve ;Zand allow the gas in the cylinder to expand. Dgirin
movement of the piston in the downwards directiom ebtain certain work performed by

excess pressure inside the cylinder with respethacatmospheric pressysg. The partial
pressure of the gas in the cylinder will be reduaedording to the formulgp = p,V, /V,

whereV denotes volume closed by the piston (isothermatge®). Due to the membrang B
the partial pressure of the air in the cylinderthd# time isp, and balances the air pressure

outside the cylinder. It means that only the gamfthe cavity effectively performs the work.

Po

Fig. 6

Consider the problem of limits for the work thaincbe performed during isothermal
expansion of an initial portion of the gas. Letammalyze the graph of the functiopV, /V
versusV shown in Fig. 7.

It is obvious that the amount of work performed thne gas during isothermal
expansion fronV, toV, is represented by the area under the curve (showre graph) from
V, toV, . Of course, the work is proportional ¥§. We shall prove that for large enough
the work can be arbitrarily large.

ConsiderV =V,,2V,,4,,8V, 16V, ,..It is clear that the rectangles I, II, Ill, ... (see

Fig. 7) have the same area and that one may diawaaily large number of such rectangles
under the considered curve. It means that duriothésmal expansion of a given portion of



the gas we may obtain arbitrarily large work (aé ttost of the heat taken from sthe
urrounding) — it is enough to takg large enough.

After reachingV, we open the valve xZand move the piston to its initial position
without performing any work. The cycle can be répdas many times as we want.

In the above considerations we focused our atterdn the work obtained during one
cycle only. We entirely neglected dynamics of thecpss, while each cycle lasts some time.
One may think that - in principle - the length bktcycle increases very rapidly with the
effective work we obtain. This would limit the poma the device we consider.

Take, however, into account that, by proper cha€evarious parameters of the
device, the time taken by one cycle can be madél sma the initial volume of the gag,

can be made arbitrarily large (we consider onlytbgcal possibilities — we neglect practical
difficulties entirely). E.g. by taking large sizétbhe membrane Band large size of the piston
we may minimize the time of taking the initial gort of the ga3d/, from the cavity and make

this portion very great.

In our analysis we neglected all losses, frictietc, One should remark that there are
no theoretical limits for them. These losses, iftitietc. can be made negligibly small.

p
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Fig. 7

The device we analyzed is very interesting: idoies work at cost of heat taken from
surrounding without any difference in temperatui@ses this contradict the second law of
thermodynamics? No! It is true that there is nogerature difference in the system, but the
work of the device makes irreversible changes & siistem (mixing of the gas from the
cavity and the air).

The solutions were marked according to the follgascheme (draft):



1. Model of an engine and its description up foéhts
2. Proof that there is no theoretical limit for power up to 4 points
3. Remark on Il law of thermodynamics up to 2 peint

EXPERIMENTAL PROBLEM

In a "black box" there are two identical semicortthg diodes and one resistor
connected in some unknown way. By using instrumpnasided by the organizers find the
resistance of the resistor.

Remark:One may assume that the diode conducts curremerwection only.

List of instrumentstwo universal volt-ammeters (without ohmmetersgttdry, wires
with endings, graph paper, resistor with regulaisistance.

Solution

At the beginning we perform preliminary measuretadyy using the circuit shown in
Fig. 8. For two values of voltage, andU ,, applied to the black box in both directions, we

measure four values of curreniU,), 1U,), I(-U,) andl(-U,). In this way we find that:

1. The black box conducts current in both directions;
2. There is an asymmetry with respect to the sigmefbltage;
3. In both directions current is a nonlinear functadrvoltage.

Fig. 8

The diodes and resistor can be connected in gelimumber of ways shown in Fig. 9
(connections that differ from each other in a &iwway have been omitted).

IRvAv; %
[V A %
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Fig. 9

Only one of these connections has the propertegioned at the beginning. It is:

B

— >

>
A

Fig. 10

For absolute values of voltages we have

whereU, denotes voltage on the resistor when a curtefibws trough the branch BJ , -
voltage on the black box when the curréntiows through the branch A, andl; - voltage on

the black box when the currehtflows through the branch B.
Therefore

_Ug(l) _Ug(1)-UL(1) _AU
| | |

R

It follows from the above that it is enough tod@atharacteristics of the black box in
both directions: by subtraction of the correspogdmoints (graphically) we obtain a straight
line (example is shown in Fig. 11) whose slopevesldo determine the value .

The solutions were marked according to the follgrscheme (draft):



Theoretical part:

1.

2
3.

4.

Proper circuit and method allowing determinatiorc@fnections

the elements in the black box up to 6 points
. Determination oR (principle) up to 2 points

Remark that measurements at the same voltagehn bot

directions make the error smaller up to 1 point

Role of number of measurements (affect on errors) up to 1 point

Experimental part:

1.
2. Practical determination & (including error) up to 4 points
3.

4. Taking into account that temperature of diodesaases during

o

Proper use of regulated resistor as potentiometer up to 2 points
Proper use of measuring instruments up to @tpoi

measurements up to 1 point
Taking class of measuring instruments into account up to 1 point

AU
[mV]

200—

150 |— I

100—
80 |— I

40 |
20 |-

0 5 10 15 20 25 |
[MA]

v

Fig. 11
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