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The sixth IPhO was held in Bucharest and the qpdnts were: Bulgaria,
Czechoslovakia, Cuba, France, German DemocratialitiepHungary, Poland, Romania, and
Soviet Union. It was an important event becauseas the first time when a non-European
country and a western country participated (Cudadl, Sweden sent one observer.

The International Board selected four theoreticebbfems and an experimental
problem. Each theoretical problem was scored frota Q0 and the maximum score for the
experimental problem was 20. The highest scoreespanding to actual marking system was
47,5 points. Each team consisted in six studemtsr Btudents obtained the first prize, seven
students obtained the second prize, ten studetdsnel the third prize, thirteen students had
got honorable mentions, and two special prizes wet@ded too.

The article contains the competition problems gieerthe &' International Physics
Olympiad (Bucharest, 1972) and their solutions. pheblems were translated from the book
published in Romania concerning the first nine rmiional Physics Olympiafisbecause |
couldn’t find the original English version.

Theoretical problems
Problem 1 (M echanics)

Three cylinders with the same mass, the same leargitthe same external radius are
initially resting on an inclined plane. The coeiiat of sliding friction on the inclined plane,
u, is known and has the same value for all the dglia. The first cylinder is empty (tube) , the
second is homogeneous filled, and the third haswéty exactly like the first, but closed with
two negligible mass lids and filled with a liquidttvthe same density like the cylinder’s walls.
The friction between the liquid and the cylinderlivig considered negligible. The density of
the material of the first cylinder is n times gegathan that of the second or of the third
cylinder.

Determine:

a) The linear acceleration of the cylinders in the+sbding case. Compare all the
accelerations.

b) Condition for anglex of the inclined plane so that no cylinders isiskgd

C) The reciprocal ratios of the angular acceleratiartie case of roll over with
sliding of all the three cylinders. Make a compamnidetween these accelerations.

d) The interaction force between the liquid and thésaaf the cylinder in the case
of sliding of this cylinder, knowing that the ligbmass is m
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Solution Problem 1

The inertia moments of the three cylinders are:

|1:%p1ﬂ(R4_r4)h’ |2=%p27'R4h=%mR2 , I3=%pzﬂ'(R4—r4)h, 1)
Because the three cylinders have the same mass :
m= ,ollr(R2 —rz)h = p,7R’h (2)
it results:
r2 :RZ(l_&]:Rz[l_lj’n:& (3)
Py n P2

The inertia. moments can be written:
1 1 Gl I
IL=1,2=-=Dl,, 1,=1,]2-= =1 4
1 2( nj> 2 3 2( j n n ()

In the expression of the inertia momentumthe sum of the two factors is constant:

[2 — lj + 1 =2
n) n
independent of n, so that their products are maiminen these factors are equal:

2—E -1 ; it results n = 1, and the produ{t@—lj E& =1. In fact n > 1, so that the products
n n n)n

is les than 1. It results:

l1>1>13 (5)
For a cylinder rolling over freely on the inclinpthne (fig. 1.1) we can write the equations:

mgsina - F, = ma (6)
N -mgcosa =0
F,R=1¢ (7)

whereg is the angular acceleration. If the cylinder ddeslide we have the condition:
a=¢R (8)

Solving the equation system (6-8) we find:
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The condition of non-sliding is:

mRZJ (10)

Fig. 1.1

In the case of the cylinders from this problem,¢badition necessary so that none of them

slides is obtained for maximum I:

2 —
tga(y(1+ mR J E ,u;:_i (11)

Il

The accelerations of the cylinders are:

_ 2gsina _ 2gsina _ 2gsina
- 1 ) - 3 ’ - 1 5 . (12)
3+@1-°) 3-@1-5)
n n
The relation between accelerations:
a<a<a (13)
In the case than all the three cylinders slide:
F, =N = pmgcosa (14)

and from (7) results:



£= I—R,umg cosa (15)

for the cylinders of the problem:

€1<€2< €3 (16)

In the case that one of the cylinders is sliding:

mgsina-F, =ma, F, =umgcosa, (17)
a = g(sina - ucosa) (18)

Let F be the total force acting on the liquid massmside the cylinder (fig.1.2), we can write:

F, +mgsina =ma=mg(sina - pcosa), F,-mgcosa =0 (19)

F=F?+F2=mgcosa Q1+ 12 =mg o (20)

cosy
where ¢ is the friction angle(tg(p= ,u).

Fig. 1.2

Problem 2 (Molecular Physics)

Two cylinders A and B, with equal diameters hawada two pistons with negligible
mass connected by a rigid rod. The pistons can rfreedy. The rod is a short tube with a
valve. The valve is initially closed (fig. 2.1).



A T B Fig. 2.1

The cylinder A and his piston is adiabatically iledéed and the cylinder B is in thermal contact
with a thermostat which has the temperature27C.

Initially the piston of the cylinder A is fixed andside there is a mass m= 32 kg of argon at a
pressure higher than the atmospheric pressureleltise cylinder B there is a mass of oxygen
at the normal atmospheric pressure.

Liberating the piston of the cylinder A, it movdewly enough (quasi-static) and at
equilibrium the volume of the gas is eight timeghar, and in the cylinder B de oxygen’s
density increased two times. Knowing that the thestat received the heat=<g47,9.10J,
determine:

a) Establish on the base of the kinetic theory ofghges, studying the elastic collisions
of the molecules with the piston, that the theretplation of the process taking place in the
cylinder A is T\?* = constant.

b) Calculate the parameters p, V, and T of argonenritial and final states.

c) Opening the valve which separates the two cylindmisulate the final pressure of the
mixture of the gases.

The kilo-molar mass of argonjis= 40 kg/kmol.

Solution Problem 2

a) We consider argon an ideal mono-atomic gas anddlisions of the atoms with the
piston perfect elastic. In such a collision withixawall the speedi of the particle changes
only the direction so that the speedand the speed' after collision there are in the same
plane with the normal and the incident and reftecangle are equal.

V.=V, V=V, (2)
In the problem the wall moves with the speegerpendicular on the wall. The relative speed

of the particle with respect the wallis G . Choosing the Oz axis perpendicular on the wall in
the sense oii, the conditions of the elastic collision give:

(v-d),=-( -a), , (v-a),, = -a),,;
V,-u= _(Vlz _u) vV, =2u-v,, V;<,y =Vyy (2)
The increase of the kinetic energy of the partiaidys massm, after collision is:

%mov? -%movz =%mo(v;2 ~v2)=2mu(u-v,) 0-2muw, (3)
because u is much smaller than

If n.is the number of molecules from unit volume witke #peed componewnt, then the

number of molecules with this component which dallin the time dt the area dS of the piston
is:



%nkvZk didS (4)
These molecules will have a change of the kinetergy:

% NV, dtdS(- 2muv, ) = -mnvidv  (5)

wheredV =udtdS is the increase of the volume of gas.
The change of the kinetic energy of the gas cooreding to the increase of volume dV is:

dE, =-m,dv ) nV; = —énmovzdv (6)
k
and:
o2
du=-2nyTV V2,V @
3 2 VvV 3 V

Integrating equation (7) results:
UV 2" = const. (8)
The internal energy of the ideal mono-atomic gggagortional with the absolute temperature
T and the equation (8) can be written:
TV ?® = const. (9)
b) The oxygen is in contact with a thermostat and suffer an isothermal process. The
internal energy will be modified only by the adiibgrocess suffered by argon gas:
AU =vC,AT =mc, AT (10)

wherev is the number of kilomoles. For arg@h) = g R.

For the entire system L=0 andU =Q.

We will use indices 1, respectively 2, for the meas corresponding to argon from cylinder
A, respectively oxygen from the cylinder B:

2/3
av =" B R -T)=0=" PRt [ 2| - (11)
L2 2 V,
From equation (11) results:
=2 R0 1 —j00 (12)
3m R (Vlj
- _1
Vl
- Tl —
T = a7 250K (13)
For the isothermal process suffered by oxygen:
P P,

p, = 200atm = 2,026[10° N / m?



From the equilibrium condition:
P, = p, = 2atm (15)
For argon:

p= P G\\%Gl—l = 64atm = 64910° N /m* (16)

1 1
v, =M Rl = oo v, =8y, = s1em® (17)
M Py

c) When the valve is opened the gases intermix attteatnal equilibrium the final
pressure will bep and the temperature T. The total number of kil@sd$ constant:
v +V, =V plv:l‘. + A — p(Vl +V2) (18)

RT, RT RT
p,+p, =2atmT, =T, =T =300K
The total volume of the system is constant:

V4V, vy, 2=Pe oy 2Ve s g (19)
Vv, p 2
From equation (18) results the final pressure:
P=p . A EIT—.+V2' = 222atm= 223[10°N/m* (20)
Vl +V2 Tl

Problem 3 (Electricity)

A plane capacitor with rectangular plates is fixead vertical position having the lower
part in contact with a dielectric liquid (fig. 3.1)
Determine the height, h, of the liquid betweenplaes and explain the phenomenon.
The capillarity effects are neglected.
It is supposed that the distance between the pktesich smaller than the linear dimensions
of the plates.

A

Fig. 3.1

It is known: the initial intensity of the electriield of the charged capacitor, E, the dengity
the relative electric permittivity, of the liquid, and the height H of the platestad tapacitor.
Discussion.



Solution Problem 3

The initial energy on the capacitor is:

2
W, :EECOUCf :%G(C?:—O,Where C, =

> 0 1)
H is the height of the plates, | is the width o tapacitor’s plates, and d is the distance
between the plates.
When the plates contact the liquid’s surface ordikéectric liquid is exerted a vertical force.
The total electric charge remains constant ancetiseno energy transferred to the system from
outside. The increase of the gravitational enesgyompensated by the decrease of the
electrical energy on the capacitor:

g HI

W, =W, +W, )
1.9 1 -
W, ==F=, W, == pgh“ld 3
b =5E We =5 3)
Cc=c, +C, = £t hi , go(Hd— h)l @
Introducing (3) and (4) in equation (2) it results:
2 —
(e, ~1)h + Hh- E&HE -1) g
The solution is:
2 _1)2
hLZ :L -1+ 1iw (8)
2(e. -1) ooH

Discussion: Only the positive solution has sens&irig in account that H is much more grater
than h we obtain the final result:

h ~ go(‘gr _1) EEs
A

Problem 4 (Optics)

A thin lens plane-convex with the diameter 2r, ¢hevature radius R and the refractive
index ny is positioned so that on its left side is aiy €1), and on its right side there is a
transparent medium with the refractive indextrl. The convex face of the lens is directed
towards air. In the air, at the distangi@n the lens, measured on the principal opticlaere
is a punctual source of monochromatic light.
a) Demonstrate, using Gauss approximation, thatdeet the position of the image, given by
the distance,drom the lens, and the position of the light seyexists the relation:
hf
S S



where { and § are the focal distances of the lens, in air, repaly in the medium with the
refractive index n

Observation: All the refractive indexes are absolatlexes.

b) The lens is cut perpendicular on its plane fadevo equal parts. These parts are moved
away at a distanae<< r (Billet lens). On the symmetry axis of thestgm obtained is led a
punctual source of light at the distangéss > f;) (fig. 4.1). On the right side of the lens there
is a screen E at the distance d. The screen i$gdavih the plane face of the lens. On this
screen there are N interference fringes, if orrigjie side of the lens is air.

Determine N function of the wave length.

n1 Ny
Fig. 4.1

Solution problem 4

a) From the Fermat principle it results that the ttime light arrives fromP, to P, is not
dependent of the way, in gauss approximatigngnd P, are conjugated points).

|
{
|
{ N
B Cq Vi 0 V2 Cz Pa Fig. 4.2

T, is the time the light roams the optical wRy,OV, P, (fig. 4.2):
2 2
T, :m+m, wherePM =,/P0O* + MO? = Plo+h—, andP,M = P20+—h
A Vv, 2P0 2P,0
becausen = OM is much more smaller thaRO or P,O.
2
A v, Vv

oA (1)
v v, 2 \{vRPO v,RPO
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From conditio, =T,, it results:

1 1 _1(1 1 1 1
b o (3)
wPO VRO V(R R WR VR,

Taking in account the relation= E, and usind?O = s,,0P, =s,, the relation (3) can be
n

written:
ﬂ+&:no(i+iJ_ 1 — 1 (4)
S R R) vR VR
If the point P, is at infinite, s, becomes the focal distance; the saméjfor
i:i no_nl_'_no_nZJ; i:i no_nl+no_n2J (5)
f2 n2 RQ fl nl R2
From the equations (30 and (4) it results:
L + k =1 (6)
S S
The lens is plane-convex (fig. 4.3) and its fodatahces are:
! Fig. 4.3
Na
R2: [o o] R1= R
nR _ R . _ n,R _ nR

f, = = 7
"'n-n n,-1 (7)

b) Inthe case of Billet lense§, and S, are the real images of the object S and can be
considered like coherent light sources (fig. 4.4).

f, =
n,-n n,-1

10
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0,0, =A is much more smaller than r:
OM =A+r=r, O=90,=90, =p,, SO, =50,=S0O = p,, Sl%:Atﬁ

We calculate the width of the interference fi@& (fig. 4.4).
r

4

1+PL

2

RR':zmAzzts'A[ﬂg¢, S'ADd—pZ,tg¢ L RR=2(d-p,)B-

2
Maximum interference condition is:

2 p,
S,N =k

The fringe of k order is located at a distangefrom A:
(d B pz)

8
A(l + sz o
Py

The expression of the inter-fringes distance is:
A(d B pz)

—= 9)
A(l + pj
Py

The number of observed fringes on the screen is:

X, =k
| =

. 1+
N=RR _oam P (10)
[ Ap,
p, can be expressed from the lenses’ formula:
P f

e

2

3
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Experimental part (M echanics)

There are given two cylindrical bodies (having iteal external shapes and from the
same material), two measuring rules, one graduatddther un-graduated, and a vessel with
water.

It is known that one of the bodies is homogenoustha other has an internal cavity with the
following characteristics:

- the cavity is cylindrical

- has the axis parallel with the axis of the body

- its length is practically equal with that of thedyo
Determine experimentally and justify theoretically:

a) The density of the material the two bodies corsist

b) The radius of the internal cavity.

c) The distance between the axis of the cavity anctieof the cylinder.

d) Indicate the sources of errors and appreciate wtfithem influences more the final

results.
Write all the variants you have found.

Solution of the experimental problem

a) Determination of the density of the material
The average density of the two bodies was chosdimasdhe bodies float on the water.
Using the mass of the liquid crowded out it is daieed the mass of the first body (the
homogenous body):

m=m, =V,p, =S,Hp, 1)
where Sis the area of the base immersed in water, Hethgth of the cylinder ang, is the
density of water.
The mass of the cylinder is:

m=V [p=7R*Hp (2)

It results the density of the body:

Sa
P= Py (3)

To calculate the area, 8 is measured the distance h above the wateasei(fig. 5.1). Area is
composed by the area of the triangle OAB plus tka af the circular sector with the angle
2n -20.

The triangle area:

%ENRZ -(R-h) {R-h)

(R-h)/h(2R-h) (@)

12



Fig. 5.1

The circular sector area is:

2(rr-6)
2

R = Rz(ﬂ— arccosl%hj (5)

The immersed area is:

S, =(R-h){/h(2R-h) + Rz(ﬂ_ arccos'%hj (6)

where R and h are measured by the graduated rule.
b) The radius of the cylindrical cavity
The second body (with cavity) is dislocating a waass:

m=m,=S,Hpo, (7)
where § is area immersed in water.
The mass of the body having the cavity inside is:

m = -v)p=nR*-r?JHp (8)

r= [R2-Parg (9)
, o
S, is determined like S

c¢) The distance between the cylinder’'s axis andcéwty axis

We put the second body on the horizontal tabléefat to float in water) and we trace the
vertical symmetry axis AB (fig. 5.2).

Using the rule we make an inclined plane. We petitbdy on this plane and we determine the
maximum angle of the inclined plane for the sitiatine body remains in rest (the body
doesn’t roll). Taking in account that the weighhtre is located on the axis AB on the left side
of the cylinder axis (point G in fig. 5.2) and ttatequilibrium the weight centre is on the
same vertical with the contact point between tHandgr and the inclined plane, we obtain the
situation corresponding to the maximum angle ofitiséned plane (the diameter AB is
horizontal).

The cavity radius is:

13



Fig. 5.2

The distance OG is calculated from the equilibricondition:
m [OG =m, [k , (m = the mass dislocated by the cavity)  (10)
OG = Rsim (12)

' 2 _ .2
x=ocd" =REina X - (12)
m, r

d) At every measurement it must be estimated theimg error. Taking in account the
expressions fop, r and x it is evaluated the maximum error for deéermination of these
measures.
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