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Theoretical problems

Question 1.

The blocks slide relative to the prism with accaiensa; andap, which are
parallel to its sides and have the same magnitu(kee Fig. 1.1). The blocks move
relative to the earth with accelerations:

(1.1) Wi =& + ao;
(1.2) W, =ap + ap. A
Now we projeciv; andw, along thex- andy-axes: y
(1.3) W, =acosd, —a,; _
(1.4) w,, =asina; N A
(1.5) W,, =acosd, — ay; — W&
. ay (o0 -
(1.6) W,, =-asina,. >
Fig. 1.1

The equations of motion for the blocks and forghiem have the following vector
forms (see Fig. 1.2):

(17) rn’lWl = rnlg + Rl +T1;
(1.8) mw, =m,g+R, +T,;
(1.9) Ma, =Mg-R,-R,+R-T,-T,.

Fig. 1.2

The forces of tensioi; andT, at the ends of the thread are of the same magnitud
since the masses of the thread and that of theypaik negligible. Note that in equation
(1.9) we account for the net forceT+(+ T,), which the bended thread exerts on the



prism through the pulleyThe equations of motion result in a system of sialar
equations when projected aloxgndy:

(1.10) m,acosa, —ma, =T cosa, — R sina,;

(1.11) masina, =Tsina, + R cosa, —m,g;

(1.12) m,acosa, —m,a, = -T cosa, + R, sind,;

(1.13) m,asina, =Tsina, +R,sina, —-m,g;

(1.14) -Ma, = R sina, —R,sina, —Tcosa, +T cosa,;
(1.15) 0=R-R cosa, -R,cosa, —Mg.

By adding up equations (1.10), (1.12), and (1.14fpeces internal to the system cancel
each other. In this way we obtain the requiredticaiabetween acceleratioasandag:

(1.16) a=a, M+m +m, :

m, Cosa, +m, COsal,
The straightforward elimination of the unknown fesajives the final answer fag:
(1.17) a, = (m,sina; —m, sina, )(m, cosa, + m, cosa,) .
(ml +tm, + M)(ml + mz) _(rn.l.cosal +m, COSC(Z)
It follows from equation (1.17) that the prism vk in equilibrium & = 0) if:

m, sina,

Question 2.

We will denote byH (H = const) the height of the tube above the mercurgllev
in the pan, and the height of the mercury columthentube byh. Under conditions of
mechanical equilibrium the hydrogen pressure inudbe is:

(21) PH2 = I:)air _pgh !
wherep is the density of mercury at temperattire
(2.2) p=p,(L-Bt)

The indexi enumerates different stages undergone by themsypteis the density of
mercury atto = 0°C, orTp = 273 K, and3 its coefficient of expansion. The volume of
the hydrogen is given by:
(2.3) V :aH—hi).
Now we can write down the equations of state fairbgen at points 0, 1, 2, and
3 of thePV diagram (see Fig. 2):
m

(2.4) (P —Po9hy)S(H —hy) :VRT ;
(2.5) (R ~Pogh)S(H ~h) = “LRT;
(2.6) (P, —=p,gh,)S(H - h,) zgRTz’

where P, = Al . Py = Po
To 1+B(T, - Tp)

isochoric, and:

=p0[1—[3(T2—TO)] since the process 1-3 is




(2.7) (P, - p,gh,)S(H - hy) =§RT3

V. H-h . :
wherep, = p,[1-B(T, - T,)], T, =T, V—3 =T, for the isobaric process 2-3.
o 4 2 >
Py —
P, 2 3
P, |
Vo Vi=V, V3 VV

Fig. 2

After a good deal of algebra the above system oaegns can be solved for the
unknown quantities, an exercise, which is left e teader. The numerical answers,
however, will be given for reference:

H=1.3m;

m= 2.11x10° kg;
T, =364 K;
P,=1.06 10 Pa;
T3=546 K;

P, = 4.8<10" Pa.

Question 3.

A circuit equivalent to the given one is shown ig.R3. In a steady state (the
capacitors are completely charged already) the samentl flows through all the
resistors in the closed circuit ABFGHDA. From thiedkhoff's second rule we obtain:

E,-E
3.1 | =— 1,
3D 4R
Next we apply this rule for the circuit ABCDA:
(3.2) V,+IR=E,-E],

whereV; is the potential difference across the capaditprBy using the expression
(3.1) forl, and the equation (3.2) we obtain:

(3.3) V,=E,-E, -5

=1V.

Similarly, we obtain the potential differencésandV, across the capacito@ andC,
by considering circuits BFGCB and FGHEF:

(3.4) V, =E, -E, _ﬂ:5V,



E, - E,

(3.5) V,=E,-E, - =1V,

Finally, the voltageVs acrossCs; is found by applying the Kirchhoff's rule for the
outermost circuit EHDAH:

(3.6) V,=E,-E, - E.-E v,
The total energy of the capacitors is expressetidyormula:
(3.7) E %(\/12 FVZ+V2 +V2 )= 261,
Cs
I
C
R R 4
A B =~  F E
—_1 [ ||
E, = E, E, R =
D | ] T |1 _’_ —
| ICl C | |C2 G — H
| |
R
Fig. 3

When points B and H are short connected the saewriel currentl’ flows
through the resistors in the BFGH circuit. It caa dalculated, again by means of the
Kirchhoff’s rule, that:

E
3.8 |'=—2,
(3.8) R
The new steady-state voltage Gxis found by considering the BFGCB circuit:
(3.9) V,+I'R=E, - E,
or finally:
(3.10) V, =%—E2 =0V.

Therefore the chargg, on C; in the new steady state is zero.

Question 4.

In a small time intervait the fish moves upward, from poiAtto pointB, at a
small distancal = vAt. Since the glass wall is very thin we can assuma¢ the rays
leaving the aquarium refract as if there was wateir interface. The divergent rays
undergoing one single refraction, as show in Figy, #orm the first, virtual, image of the
fish. The corresponding vertical displacemaiB, of that image is equal to the distance
d, between the optical ax&s and the ray;, which leaves the aquarium parallelao
Since distancesl and d; are small compared t® we can use the small-angle
approximation: sia = tam = a (rad). Thus we obtain:

(4.2) di=Ra;
(4.2) d=RYy,
(4.3) a+y=23;

(4.4) a=np.



From equations (4.1) - (4.4) we find the verticalpthcement of the first image in terms
of d:

n
4.5 d=—-d,
(4.5) =5
and respectively its velocity in terms ofv:
(4.6) v, = =2y,
-n

Fig. 4.1

The rays, which are first reflected by the mirrand then are refracted twice at
the walls of the aquarium form the second, realgendsee Fig. 4.2). It can be
considered as originating from the mirror imageha fish, which move along the line
A’B’ at exactly the same distand@s the fish do.

Fig. 4.2

The vertical displacemer,B, of the second image is equal to the distadeetween
the optical axisa and the ray,, which is parallel taa. Again, using the small-angle
approximation we have:

4.7) d’ =4Rd-d,

(4.8) d>=Ra

Following the derivation of equation (4.5) we ohtai
n

4.9 d,=——d".

(4.9) -

Now using the exact geometric relations:



(4.10) 0=20-2

and the Snell’'s law (4.4) in a small-angle limig finally expressl, in terms ofd:
n

4.11 d, = d,

4-11) > 9n-10

and the velocity, of the second image in terms\of
n 2

412 Vv, = V=—V.

4-12)  9n-10 3

The relative velocity of the two images is:

(413) Vrel =V1—V2

in a vector form. Since vectorg andv, are oppositely directed (one of the images

moves upward, the other, downward) the magnitudbefelative velocity is:

(4.14) Vi =V, +V, =§v.

Experimental problem

The circuit is given in the figure below:

O

(v)
W)

|
L
E
Sliding the contact along the rheostat sets theentir supplied by the source. For each
value ofl the voltageU across the source terminals is recorded by thenetér. The
power dissipated in the rheostat is:

P=UI
provided that the heat losses in the internal t&ste of the ammeter are negligible.
1. A typicalP-I curve is shown below:

PA
I:)ma

v




If the current varies in a sufficiently large intat a maximum powePnax can be
detected at a certain valug, of I. Theoretically, thé>(l) dependence is given by:

(5.1) P=ElI-17°r,

whereE andr are the EMF and the internal resistance of theodicce respectively. The
maxim value oP therefore is:

E2
5.2 P =—.
( ) max 4r
and corresponds to a current:
E
5.3 l,=—.
3) ° 2

2. The internal resistance is determined troug®) (@nd (5.3) by recordinBmax andlg
from the experimental plot:

3. Similarly, EMF is calculated as:

4. The current depends on the resistance of tlestaieas:
| = E
R+r
Therefore a value d® can be calculated for each valud :of
(5.4) R= I_E -r.
The power dissipated in the rheostat is givennms$eofR respectively by:
E°R
(R+1)?’

(5.5) P=

TheP-Rplot is given below:
P A

E%/(4r)

v

R=r R

Its maximum is obtained & =r.

5. The total power supplied by the dc source is:
EZ A

5.6 P, =——.

( ) tot R +r PtOt

E2/r

v




6. The efficiency respectively is:

P R
5.7 == .
(5.7) n P Rer




