
3rd International Physics Olympiad
1969, Brno, Czechoslovakia

Problem 1. Figure 1 shows a mechanical system consisting of three carts A,
B and C of masses m1 = 0.3 kg, m2 = 0.2 kg and m3 = 1.5 kg respectively.
Carts B and A are connected by a light taut inelastic string which passes over
a light smooth pulley attaches to the cart C as shown. For this problem, all
resistive and frictional forces may be ignored as may the moments of inertia
of the pulley and of the wheels of all three carts. Take the acceleration due
to gravity g to be 9.81 m s−2.
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Figure 1:

1. A horizontal force ~F is now applied to cart C as shown. The size of ~F
is such that carts A and B remain at rest relative to cart C.

a) Find the tension in the string connecting carts A and B.

b) Determine the magnitude of ~F .

2. Later cart C is held stationary, while carts A and B are released from
rest.

a) Determine the accelerations of carts A and B.

b) Calculate also the tension in the string.
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Solution:
Case 1. The force ~F has so big magnitude that the carts A and B remain
at the rest with respect to the cart C, i.e. they are moving with the same
acceleration as the cart C is. Let ~G1, ~T1 and ~T2 denote forces acting on
particular carts as shown in the Figure 2 and let us write the equations of
motion for the carts A and B and also for whole mechanical system. Note
that certain internal forces (viz. normal reactions) are not shown.
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Figure 2:

The cart B is moving in the coordinate system Oxy with an acceleration
ax. The only force acting on the cart B is the force ~T2, thus

T2 = m2 ax . (1)

Since ~T1 and ~T2 denote tensions in the same cord, their magnitudes satisfy

T1 = T2 .

The forces ~T1 and ~G1 act on the cart A in the direction of the y-axis.
Since, according to condition 1, the carts A and B are at rest with respect
to the cart C, the acceleration in the direction of the y-axis equals to zero,
ay = 0, which yields

T1 −m1 g = 0 .

Consequently
T2 = m1 g . (2)

So the motion of the whole mechanical system is described by the equation

F = (m1 + m2 + m3) ax , (3)
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because forces between the carts A and C and also between the carts B
and C are internal forces with respect to the system of all three bodies. Let
us remark here that also the tension ~T2 is the internal force with respect to
the system of all bodies, as can be easily seen from the analysis of forces
acting on the pulley. From equations (1) and (2) we obtain

ax =
m1

m2

g .

Substituting the last result to (3) we arrive at

F = (m1 + m2 + m3)
m1

m2

g .

Numerical solution:

T2 = T1 = 0.3 · 9.81 N = 2.94 N ,

F = 2 · 3

2
· 9.81 N = 29.4 N .

Case 2. If the cart C is immovable then the cart A moves with an accelera-
tion ay and the cart B with an acceleration ax. Since the cord is inextensible
(i.e. it cannot lengthen), the equality

ax = −ay = a

holds true. Then the equations of motion for the carts A, respectively B,
can be written in following form

T1 = G1 −m1 a , (4)

T2 = m2 a . (5)

The magnitudes of the tensions in the cord again satisfy

T1 = T2 . (6)

The equalities (4), (5) and (6) immediately yield

(m1 + m2) a = m1 g .
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Using the last result we can calculate

a = ax = −ay =
m1

m1 + m2

g ,

T2 = T1 =
m2m1

m1 + m2

g .

Numerical results:

a = ax =
3

5
· 9.81 m s−2 = 5.89 m s−2 ,

T1 = T2 = 1.18 N .

Problem 2. Water of mass m2 is contained in a copper calorimeter of
mass m1. Their common temperature is t2. A piece of ice of mass m3 and
temperature t3 < 0 oC is dropped into the calorimeter.

a) Determine the temperature and masses of water and ice in the equilib-
rium state for general values of m1, m2, m3, t2 and t3. Write equilibrium
equations for all possible processes which have to be considered.

b) Find the final temperature and final masses of water and ice for m1 =
1.00 kg, m2 = 1.00 kg, m3 = 2.00 kg, t2 = 10 oC, t3 = −20 oC.

Neglect the energy losses, assume the normal barometric pressure. Specific
heat of copper is c1 = 0.1 kcal/kg·oC, specific heat of water c2 = 1 kcal/kg·oC,
specific heat of ice c3 = 0.492 kcal/kg·oC, latent heat of fusion of ice l =
78, 7 kcal/kg. Take 1 cal = 4.2 J.

Solution:
We use the following notation:

t temperature of the final equilibrium state,
t0 = 0 oC the melting point of ice under normal pressure conditions,

M2 final mass of water,
M3 final mass of ice,

m′
2 ≤ m2 mass of water, which freezes to ice,

m′
3 ≤ m3 mass of ice, which melts to water.

a) Generally, four possible processes and corresponding equilibrium states
can occur:
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1. t0 < t < t2, m′
2 = 0, m′

3 = m3, M2 = m2 + m3, M3 = 0.
Unknown final temperature t can be determined from the equation

(m1c1 + m2c2)(t2 − t) = m3c3(t0 − t3) + m3l + m3c2(t− t0) . (7)

However, only the solution satisfying the condition t0 < t < t2 does
make physical sense.

2. t3 < t < t0, m′
2 = m2, m′

3 = 0, M2 = 0, M3 = m2 + m3.
Unknown final temperature t can be determined from the equation

m1c1(t2 − t) + m2c2(t2 − t0) + m2l + m2c3(t0 − t) = m3c3(t− t3) . (8)

However, only the solution satisfying the condition t3 < t < t0 does
make physical sense.

3. t = t0, m′
2 = 0, 0 ≤ m′

3 ≤ m3, M2 = m2 + m′
3, M3 = m3 −m′

3.
Unknown mass m′

3 can be calculated from the equation

(m1c1 + m2c2)(t2 − t0) = m3c3(t− t3) + m′
3l . (9)

However, only the solution satisfying the condition 0 ≤ m′
3 ≤ m3 does

make physical sense.

4. t = t0, 0 ≤ m′
2 ≤ m2, m′

3 = 0, M2 = m2 −m′
2, M3 = m3 + m′

2.
Unknown mass m′

2 can be calculated from the equation

(m1c1 + m2c2)(t2 − t0) + m′
2l = m3c3(t0 − t3) . (10)

However, only the solution satisfying the condition 0 ≤ m′
2 ≤ m2 does

make physical sense.

b) Substituting the particular values of m1, m2, m3, t2 and t3 to equations (7),
(8) and (9) one obtains solutions not making the physical sense (not satisfying
the above conditions for t, respectively m′

3). The real physical process under
given conditions is given by the equation (10) which yields

m′
2 =

m3c3(t0 − t3)− (m1c1 + m2c2)(t2 − t0)

l
.

Substituting given numerical values one gets m′
2 = 0.11 kg. Hence, t = 0 oC,

M2 = m2 −m′
2 = 0.89 kg, M3 = m3 + m′

2 = 2.11 kg.
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Problem 3. A small charged ball of mass m and charge q is suspended
from the highest point of a ring of radius R by means of an insulating cord of
negligible mass. The ring is made of a rigid wire of negligible cross section and
lies in a vertical plane. On the ring there is uniformly distributed charge Q of
the same sign as q. Determine the length l of the cord so as the equilibrium
position of the ball lies on the symmetry axis perpendicular to the plane of
the ring.

Find first the general solution a then for particular values Q = q =
9.0 · 10−8 C, R = 5 cm, m = 1.0 g, ε0 = 8.9 · 10−12 F/m.

Solution:
In equilibrium, the cord is stretched in the direction of resultant force of ~G =
m~g and ~F = q ~E, where ~E stands for the electric field strength of the ring
on the axis in distance x from the plane of the ring, see Figure 3. Using the
triangle similarity, one can write

x

R
=

Eq

mg
. (11)
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Figure 3:

For the calculation of the electric field strength let us divide the ring to
n identical parts, so as every part carries the charge Q/n. The electric field
strength magnitude of one part of the ring is given by

∆E =
Q

4πε0l2n
.
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Figure 4:

This electric field strength can be decomposed into the component in the
direction of the x-axis and the one perpendicular to the x-axis, see Figure 4.
Magnitudes of both components obey

∆Ex = ∆E cos α =
∆E x

l
,

∆E⊥ = ∆E sin α .

It follows from the symmetry, that for every part of the ring there exists
another one having the component ∆ ~E⊥ of the same magnitude, but however
oppositely oriented. Hence, components perpendicular to the axis cancel each
other and resultant electric field strength has the magnitude

E = Ex = n∆Ex =
Q x

4πε0 l3
. (12)

Substituting (12) into (11) we obtain for the cord length

l = 3

√
Qq R

4πε0 mg
.

Numerically

l =
3

√
9.0 · 10−8 · 9.0 · 10−8 · 5.0 · 10−2

4π · 8.9 · 10−12 · 10−3 · 9.8 m = 7.2 · 10−2 m .

Problem 4. A glass plate is placed above a glass cube of 2 cm edges in
such a way that there remains a thin air layer between them, see Figure 5.
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Electromagnetic radiation of wavelength between 400 nm and 1150 nm (for
which the plate is penetrable) incident perpendicular to the plate from above
is reflected from both air surfaces and interferes. In this range only two
wavelengths give maximum reinforcements, one of them is λ = 400 nm. Find
the second wavelength. Determine how it is necessary to warm up the cube
so as it would touch the plate. The coefficient of linear thermal expansion is
α = 8.0 · 10−6 oC−1, the refractive index of the air n = 1. The distance of the
bottom of the cube from the plate does not change during warming up.
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Solution:
Condition for the maximum reinforcement can be written as

2dn− λk

2
= kλk , for k = 0, 1, 2, . . . ,

i.e.

2dn = (2k + 1)
λk

2
, (13)

with d being thickness of the layer, n the refractive index and k maximum
order. Let us denote λ′ = 1150 nm. Since for λ = 400 nm the condition for
maximum is satisfied by the assumption, let us denote λp = 400 nm, where p
is an unknown integer identifying the maximum order, for which

λp(2p + 1) = 4dn (14)

holds true. The equation (13) yields that for fixed d the wavelength λk

increases with decreasing maximum order k and vise versa. According to the
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assumption,
λp−1 < λ′ < λp−2 ,

i.e.
4dn

2(p− 1) + 1
< λ′ <

4dn

2(p− 2) + 1
.

Substituting to the last inequalities for 4dn using (14) one gets

λp(2p + 1)

2(p− 1) + 1
< λ′ <

λp(2p + 1)

2(p− 2) + 1
.

Let us first investigate the first inequality, straightforward calculations give
us gradually

λp(2p + 1) < λ′(2p− 1) , 2p(λ′ − λp) > λ′ + λp ,

i.e.

p >
1

2

λ′ + λp

λ′ − λp

=
1

2

1150 + 400

1150− 400
= 1. . . . (15)

Similarly, from the second inequality we have

λp(2p + 1) > λ′(2p− 3) , 2p(λ′ − λp) < 3λ′ + λp ,

i.e.

p <
1

2

3λ′ + λp

λ′ − λp

=
1

2

3 · 1150 + 400

1150− 400
= 2. . . . (16)

The only integer p satisfying both (15) and (16) is p = 2.
Let us now find the thickness d of the air layer:

d =
λp

4
(2p + 1) =

400

4
(2 · 2 + 1) nm = 500 nm .

Substituting d to the equation (13) we can calculate λp−1, i.e. λ1:

λ1 =
4dn

2(p− 1) + 1
=

4dn

2p− 1
.

Introducing the particular values we obtain

λ1 =
4 · 500 · 1
2 · 2− 1

nm = 666.7 nm .

Finally, let us determine temperature growth ∆t. Generally, ∆l = αl∆t
holds true. Denoting the cube edge by h we arrive at d = αh∆t. Hence

∆t =
d

αh
=

5 · 10−7

8 · 10−6 · 2 · 10−2
oC = 3.1 oC .
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