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Abstract

The article contains the competition problems giatrhe ' International Physics
Olympiad (Warsaw, 1967) and their solutions. Aduhiilly it contains comments of historical
character.

I ntroduction

One of the most important points when preparing students to the International
Physics Olympiads is solving and analysis of thepetition problems given in the past.
Unfortunately, it is very difficult to find approptte materials. The proceedings of the
subsequent Olympiads are published starting fra Xt IPhO in Sigtuna (Sweden, 1984). It
is true that some of very old problems were pulklisinot always in English) in different
books or articles, but they are practically unalsde. Moreover, sometimes they are more or
less substantially changed.

The original English versions of the problems @ 1ff IPhO have not been conserved.
The permanent Secretariat of the IPhOs was craatd®83. Until this year the Olympic
materials were collected by different persons @irtprivate archives. These archives as a rule
were of amateur character and practically no ontmerh was complete. This article is based
on the books by R. Kunfalvi [1], Tadeusz Pniewsk] and Waldemar Gorzkowski [3].
Tadeusz Pniewski was one of the members of the nixigg Committee of the Polish
Physics Olympiad when thé'1PhO took place, while R. Kunfalvi was one of thembers
of the International Board at thé' IPhO. For that it seems that credibility of thesaterials
is very high. The differences between versionseees by R. Kunfalvi and T. Pniewski are
rather very small (although the book by Pniewskrigher, especially with respect to the
solution to the experimental problem).

As regards the competition problems given in Sigtt984) or later, they are
available, in principle, in appropriate proceedintis principle” as the proceedings usually
were published in a small number of copies, notughato satisfy present needs of people
interested in our competition. It is true that gvgear the organizers provide the permanent
Secretariat with a number of copies of the proaegsiior free dissemination. But the needs
are continually growing up and we have disseminptadtically all what we had.

The competition problems were commonly availabtdgast for some time) just only
from the XXVI IPhO in Canberra (Australia) as frdhmat time the organizers started putting
the problems on their home pages. The Olympic hpage_www.jyu.fi/iphocontains the
problems starting from the XXVIII IPhO in Sudburg€gnada). Unfortunately, the problems
given in Canberra (XXVI IPhO) and in Oslo (XXVII i) are not present there.

The net result is such that finding the competitipmoblems of the Olympiads
organized prior to Sudbury is very difficult. Itesas that the best way of improving the
situation is publishing the competition problemstloé older Olympiads in our journal. The
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guestion arises, however, who should do it. Aceagdo the Statutes the problems are created
by the local organizing committees. It is true ttreg texts are improved and accepted by the
International Board, but always the organizers likarmain responsibility for the topics of
the problems, their structure and quality. On ttleeohand, the glory resulting of high level
problems goes to them. For the above it is abdglaiear to me that they should have an
absolute priority with respect to any form of peghlion. So, the best way would be to publish
the problems of the older Olympiads by represergatiof the organizers from different
countries.

Poland organized the IPhOs for thee times: | IPh@5T), VII IPhO (1974) and XX
IPhO (1989). So, | have decided to give a good gkamnd present the competition problems
of these Olympiads in three subsequent articlesh@tsame time | ask our Colleagues and
Friends from other countries for doing the saméwéspect to the Olympiads organized in
their countries prior to the XXVIII IPhO (Sudbury).

| IPhO (Warsaw 1967)

The problems were created by the Organizing Coremitit present we are not able
to recover the names of the authors of the prohlems

Theoretical problems
Problem 1

A small ball with mas# = 0.2 kg rests on a vertical column with height 5m. A
bullet with massn = 0.01 kg, moving with velocity, = 500 m/s, passes horizontally through
the center of the ball (Fig. 1). The ball reachesdround at a distanse= 20 m. Where does
the bullet reach the ground? What part of the kinetergy of the bullet was converted into
heat when the bullet passed trough the ball? Negbststance of the air. Assume tigat 10
m/s.
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Fig. 1




Solution
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Vo v — horizontal component of the velocity

of the bullet after collision

V — horizontal component of the velocity

of the ball after collision

Fig. 2
We will use notation shown in Fig. 2.

As no horizontal force acts on the system ballultelb, the horizontal component of
momentum of this system before collision and aftdlision must be the same:

my, = mv+MV.

So,

v=yv,-——V.

M
m
From conditions described in the text of the problefollows that
V>V,
After collision both the ball and the bullet conte a free motion in the gravitational

field with initial horizontal velocities andV, respectively. Motion of the ball and motion of
the bullet are continued for the same time:



It is time of free fall from height.
The distances passed by the ball and bullet ddinmgt are:

s=Vt and d=vt,

respectively. Thus

V=s g.
2h
Therefore
V=V, —Ms 9.
m \ 2h
Finally:
d=y, /Z_h —Ms.
g m
Numerically:
d =100 m.
The total kinetic energy of the system was equah#initial kinetic energy of the
bullet:
g =M
2

Immediately after the collision the total kinetineegy of the system is equal to the
sum of the kinetic energy of the bullet and théd:bal

2
g MV MV
2 2

Their difference, converted into heat, was
AE=E,-(E,+E,).
It is the following part of the initial kinetic engy of the bullet:

_E_ _Em+EM

EO EO
By using expressions for energies and velocitiested earlier) we get



Ms*g(.V [2h M+m
p=——"| 2> [— - .
mv, 2h{ s\ g m

p=92,8%.

Numerically:

Problem 2

Consider an infinite network consisting of resist¢resistance of each of themr)s
shown in Fig. 3. Find the resultant resistafit,g between points A and B.

Solution

It is easy to remark that after removing the feitt of the network, shown in Fig. 4
with the dotted square, then we receive a netwinakk is identical with the initial network (it
is result of the fact that the network is infinite)

A | | | | - \—_¥e_e— e
r r r
r r r
B ____________

Thus, we may use the equivalence shown graphicaliyg. 5.
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Fig. 5



Algebraically this equivalence can be written as

1

1 1
B T

r Ry

Ryg=r+

Thus
Rz —TR—r?=0.
This equation has two solutions:
Ry =3 1£/5)r .

The solution corresponding to “-“ in the abovenfioita is negative, while resistance
must be positive. So, we reject it. Finally we reee

Ry =4 (@1+~/5)r .
Problem 3

Consider two identical homogeneous balls, A and vdth the same initial
temperatures. One of them is at rest on a horizpae, while the second one hangs on a
thread (Fig. 6). The same quantities of heat haenlsupplied to both balls. Are the final
temperatures of the balls the same or not? Jugtifly answer. (All kinds of heat losses are
negligible.)

Fig. 6
Solution

Fig. 7

As regards the text of the problem, the sentefidtes “same quantities of heat have
been supplied to both balls.” is not too clear. Wik follow intuitive understanding of this



sentence, i.e. we will assume that both systems {#e hanging ball and B — the ball resting
on the plane) received the same portion of enexgy butside. One should realize, however,
that it is not the only possible interpretation.

When the balls are warmed up, their mass centersnaving as the radii of the balls
are changing. The mass center of the ball A go@smdwhile the mass center of the ball B
goes up. It is shown in Fig. 7 (scale is not covesy.

Displacement of the mass center corresponds tarmgehof the potential energy of the
ball in the gravitational field.

In case of the ball A the potential energy deasadrom the °l principle of
thermodynamics it corresponds to additional heatindpe ball.

In case of the ball B the potential energy incesasFrom the ®i principle of
thermodynamics it corresponds to some “losses ef itbat provided” for performing a
mechanical work necessary to rise the ball. Theremilt is that the final temperature of the
ball B should be lower than the final temperaturéhe ball A.

The above effect is very small. For example, orsg riind (see later) that for balls
made of lead, with radius 10 cm, and portion ofthespual to 50 kcal, the difference of the
final temperatures of the balls is of ordei®3Q For spatial and time fluctuations such small
guantity practically cannot be measured.

Calculation of the difference of the final tempgaras was not required from the
participants. Nevertheless, we present it herenadeanent of discussion.

We may assume that the work against the atmosppezssure can be neglected. It is
obvious that this work is small. Moreover, it isnalst the same for both balls. So, it should
not affect the difference of the temperatures sutigtlly. We will assume that such quantities
as specific heat of lead and coefficient of theregdansion of lead are constant (i.e. do not
depend on temperature).

The heat used for changing the temperatures tf tvealy be written as

Q =md\t,, wherei =AorB,

Here: m denotes the mass of badl, - the specific heat of lead anit; - the change of the
temperature of ball.

The changes of the potential energy of the baiq@@glecting signs):

AE, =mgraAt;, wherei=AorB.

Here: g denotes the gravitational acceleratior initial radius of the ballg - coefficient of
thermal expansion of lead. We assume here thahtbad does not change its length.

Taking into account conditions described in thet tef the problem and the
interpretation mentioned at the beginning of thetsmn, we may write:

Q=Q, - AAE,, fortheball A,
Q=Q; + AAE,, for theballB.

A denotes the thermal equivalent of work= 024C—a|. In fact, A is only a conversion ratio

between calories and joules. If you use a systeamiv$ in which calories are not present, you
may omit A at all.



Thus

Q=(mc- Amgra)At,, for theball A,
Q= (mc+ Amgra)At,, for theball B

and
My=— 2 A=
mc—- Amgra mc+ Amgra
Finally we get
At=At, —Aty = 2Agra : Q _ 2AQgra .
c®—(Agra)* m mc

(We neglected the term witth® as the coefficientr is very small.)

Now we may put the numerical valueQ=50 kcal, A= 024&allJ, g=9.8m/<,

m=47 kg (mass of the lead ball with radius equal@Qoctn), r =0.1 m, c= 0. 03kal/(gK),
a =2910° K. After calculations we get =1.510°K.

Problem 4

CommentThe Organizing Committee prepared three theoreficablems. Unfortunately, at
the time of the *1 Olympiad the Romanian students from the last cless the entrance
examinations at the universities. For that Romaseat a team consisting of students from
younger classes. They were not familiar with eleityr To give them a chance the
Organizers (under agreement of the InternationaduBlp) added the fourth problem presented
here. The students (not only from Romania) werewadt to chose three problems. The
maximum possible scores for the problems weVeprbblem — 10 points,"? problem — 10
points, 3 problem — 10 points and"4problem — 6 points. The fourth problem was solwed

8 students. Only four of them solved the problené fooints.

A closed vessel with volumé, = 10 | contains dry air in the normal conditiots=
0°C, po =1 atm). In some moment 3 g of water were addetié¢ vessel and the system was
warmed up ta = 100C. Find the pressure in the vessel. Discuss assumpbu made to
solve the problem.

Solution

The water added to the vessel evaporates. Asshatette whole portion of water
evaporated. Then the density of water vapor in°C0€hould be 0.300 g/l. It is less than the
density of saturated vapor at 2@equal to 0.597 g/l. (The students were allowedige
physical tables.) So, at 100 the vessel contains air and unsaturated wateorvaply
(without any liquid phase).

Now we assume that both air and unsaturated waigor behave as ideal gases. In
view of Dalton law, the total pressupein the vessel at 10C is equal to the sum of partial
pressures of the gy, and unsaturated water vagmr



P=P.t P

As the volume of the vessel is constant, we ma}yaihhe Gay-Lussac law to the air.
We obtain:

_ (273+t}
pa pO 273 .

The pressure of the water vapor may be found fiteenequation of state of the ideal
gas:

vaO _m
273+t U

wherem denotes the mass of the vapgar; the molecular mass of the water aRd- the
universal gas constant. Thus,

m _ 273+t
p,=—R

H Vo

and finally
273+t . m _ 273+t
P=Po +—R -
273 u vV,

Numerically:

p = (1.366+ 0.516)atm= 188atm.

Experimental problem
The following devices and materials are given:

Balance (without weights)
Calorimeter
Thermometer
Source of voltage
Switches

Wires

Electric heater
Stop-watch

. Beakers

10. Water
11.Petroleum

12.Sand (for balancing)

CoNooURwWNE

Determine specific heat of petroleum. The spediat of water is 1 cal/{3C). The
specific heat of the calorimeter is 0.092 cali(y.
Discuss assumptions made in the solution.



Solution

The devices given to the students allowed usimgra¢ methods. The students used
the following three methods:

1. Comparison of velocity of warming up water and pketum;
2. Comparison of cooling down water and petroleum;
3. Traditional heat balance.

As no weights were given, the students had to lsesand to find portions of petroleum
and water with masses equal to the mass of calteime

First method: comparison of velocity of warming up

If the heater is inside water then both water aaldroneter are warming up. The heat
taken by water and calorimeter is:

Q, = m,c,At, + mCAt,,

where: m, denotes mass of watem, - mass of calorimeterg,, - specific heat of waterg, -

specific heat of calorimetent, - change of temperature of the system water + icaéter.
On the other hand, the heat provided by the héatgual:

Q=ATT

where:A — denotes the thermal equivalent of wddks- voltage R — resistance of the heater,
1 — time of work of the heater in the water.
Of course,

Q =Q,.

Thus

2

AUF r, =m,c,At, + m.C.At, .

For petroleum in the calorimeter we get a simitanfula:

2
AUF 7, =m,C,At, + mcC.At,.

where: m denotes mass of petroleunn, - specific heat of petroleumit,- change of
temperature of the system water + petrolegn, time of work of the heater in the petroleum.

By dividing the last equations we get



, _ mcAtL +mcAt
7, mC,At, +mCAt,

It is convenient to perform the experiment by tgkmasses of water and petroleum equal
to the mass of the calorimeter (for that we usebtlance and the sand). For

m, =m, =m
the last formula can be written in a very simplenfo

I, _ c, At +c At

‘1
r, C,At, +cAt,

Thus
AT [ M T
¢ or, A" r, Ot, ) °
or
C. :ﬁcw— 1—ﬁ Ce
k, K,
where
klzﬂ and k2=&
z-l T2

denote “velocities of heating” water and petroleuwespectively. These quantities can be
determined experimentally by drawing graphs reprissg dependencét, and At, on time
(7). The experiment shows that these dependencédim@ae. Thus, it is enough to take slopes
of appropriate straight lines. The experimentalugegiven to the students allowed
measurements of the specific heat of petroleumaleigu0.53 cal/(§T), with accuracy about
1%.

Some students used certain mutations of this reblyoperforming measurements at
At,= At, or atr, =7,. Then, of course, the error of the final resulyrieater (it is additionally

affected by accuracy of establishing the conditidhs At, or atr, =7,).

Second method: comparison of velocity of coolingrdo

Some students initially heated the liquids in tleodmeter and later observed their
cooling down. This method is based on the Newtda/s of cooling. It says that the he@t
transferred during cooling in time is given by the formula:

Q=h(t-)sr,

where:t denotes the temperature of the body; the temperature of surroundirsy;: area of
the body, andh — certain coefficient characterizing propertiesh# surface. This formula is



correct for small differences of temperatutesd only (small compared tdé and J in the
absolute scale).

This method, like the previous one, can be appiredifferent versions. We will
consider only one of them.

Consider the situation when cooling of water aetrgdeum is observed in the same

calorimeter (containing initially water and latestpleum). The heat lost by the system water
+ calorimeter is

AQ, =(m,c, + m.C,)At,

where At denotes a change of the temperature of the sydeimg certain period,. For the

system petroleum + calorimeter, under assumptiahttie change in the temperatuke is
the same, we have

AQ, =(m,c, + mcC )At.

Of course, the time correspondingZb in the second case will be different. Let it be
From the Newton's law we get

AQl — z-1
AQ, T,

Thus

i - I‘Tl\NCW + mCCC
r, myc,+mc,

If we conduct the experiment at
m, =m, =m,,

then we get

T T
C, =—=C, —(l—ijcc.
Tl Tl

As cooling is rather a very slow process, thishodtgives the result with definitely
greater error.

Third method: heat balance

This method is rather typical. The students he#tedwater in the calorimeter to certain
temperaturet, and added the petroleum with the temperatyréAfter reaching the thermal

equilibrium the final temperature wasFrom the thermal balance (neglecting the heaekk)s
we have



(mWCW + mccc)(tl - t) = mpcp(t - t2) .
If, like previously, the experiment is conducted at

m,=m,=m,
then

t, -t
c,=(c, +C
p (W c)t_t2

In this methods the heat losses (when adding ttrelpem to the water) always played a
substantial role.

The accuracy of the result equal or better thanca® be reached by using any of the
methods described above. However, one should rethatkn the first method it was easiest.
The most common mistake was neglecting the heatcdgpof the calorimeter. This mistake
increased the error additionally by about 8%.

Marks

No marking schemes are present in my archive meOnly the mean scores are
available. They are:

Problem # 1 7.6 points
Problem # 2 7.8 points (without the Romaniamlstus)
Problem # 3 5.9 points
Experimental problem 7.7 points
Thanks

The author would like to express deep thanks ¢d. Ban Mostowski and Dr. Yohanes
Surya for reviewing the text and for valuable comisend remarks.
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