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The Extremum Principle1

A. The Extremum Principle in Mechanics

Consider a horizontal frictionless x-y plane
shown in Fig. 1. It is divided into two regions,
I and II, by a line AB satisfying the equation
x = x1. The potential energy of a point parti-
cle of mass m in region I is V = 0 while it is
V = V0 in region II. The particle is sent from
the origin O with speed v1 along a line making
an angle θ1 with the x-axis. It reaches point P
in region II traveling with speed v2 along a line
that makes an angle θ2 with the x−axis. Ignore
gravity and relativistic effects in this entire task
T-2 (all parts). Figure 1

(A1) Obtain an expression for v2 in terms of m, v1 and V0 . [0.2]

Solution:

From the principle of Conservation of Mechanical Energy

1

2
mv21 =

1

2
mv22 + V0

v2 = (v21 −
2V0
m

)1/2

(A2) Express v2 in terms of v1, θ1 and θ2. [0.3]

Solution:

At the boundary there is an impulsive force (∝ dV/dx) in the −x direction. Hence
only the velocity component in the x−direction v1x suffers change . The component in
the y−direction remains unchanged. Therefore
v1y = v2y
v1 sin θ1 = v2 sin θ2

We define a quantity called action A = m
∫
v(s) ds, where ds is the infinitesimal length along

the trajectory of a particle of mass m moving with speed v(s). The integral is taken over the
path. As an example. for a particle moving with constant speed v on a circular path of radius
R, the action A for one revolution will be 2πmRv. For a particle with constant energy E, it can
be shown that of all the possible trajectories between two fixed points, the actual trajectory is
the one on which A defined above is an extremum (minimum or maximum). Historically this
is known as the Principle of Least Action (PLA).
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(A3) PLA implies that the trajectory of a particle moving between two fixed points in a region
of constant potential will be a straight line. Let the two fixed points O and P in Fig. 1
have coordinates (0,0) and (x0,y0) respectively and the boundary point where the particle
transits from region I to region II have coordinates (x1,α). Note x1 is fixed and the action
depends on the coordinate α only. State the expression for the action A(α). Use PLA to
obtain the the relationship between v1/v2 and these coordinates. [1.0]

Solution:

By definition A(α) from O to P is

A(α) = mv1

√
x21 + α2 +mv2

√
(x0 − x1)2 + (y0 − α)2

Differentiating w.r.t. α and setting the derivative of A(α) to zero

v1α

(x21 + α2)1/2
− v2(y0 − α)

[(x0 − x1)2 + (y0 − α)2]1/2
= 0

∴
v1
v2

=
(y0 − α) (x21 + α2)1/2

α [(x0 − x1)2 + (y0 − α)2]1/2

Note this is the same as A2, namely v1 sin θ1 = v2 sin θ2.

B. The Extremum Principle in Optics

A light ray travels from medium I to medium
II with refractive indices n1 and n2 respectively.
The two media are separated by a line parallel
to the x-axis. The light ray makes an angle i1
with the y-axis in medium I and i2 in medium II
(see Fig. 2). To obtain the trajectory of the ray,
we make use of another extremum (minimum or
maximum) principle known as Fermat’s princi-
ple of least time.

Figure 2

(B1) The principle states that between two fixed points, a light ray moves along a path such
that the time taken between the two points is an extremum. Derive the relation between
sin i1 and sin i2 on the basis of Fermat’s principle. [0.5]

Solution:

The speed of light in medium I is c/n1 and in medium II is c/n2,
where c is the speed of light in vacuum. Let the two media be separated
by the fixed line y = y1. Then time T (α) for light to travel from origin
(0,0) and (x0,y0) is

T (α) = n1(
√
y21 + α2)/c+ n2(

√
(x0 − α)2 + (y0 − y1)2)/c
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Differentiating w.r.t. α and setting the derivative of T (α) to zero

n1α

(y21 + α2)1/2
− n2(y0 − α)

[(x0 − α)2 + (y0 − y1)2]1/2
= 0

∴ n1 sin i1 = n2 sin i2

[Note: Derivation is similar to A3. This is Snell’s law.]

Shown in Fig. 3 is a schematic sketch of the
path of a laser beam incident horizontally on
a solution of sugar in which the concentration
of sugar decreases with height. As a conse-
quence, the refractive index of the solution also
decreases with height. Figure 3

(B2) Assume that the refractive index n(y) depends only on y. Use the equation obtained in B1
to obtain the expresssion for the slope dy/dx of the beam’s path in terms of n0 at y = 0
and n(y). [1.5]

Solution:

From Snell’s law n0 sin i0 = n(y) sin i

Then,
dy

dx
= − cot i

n0 sin i0 =
n(y)√

1 + (
dy

dx
)2

dy

dx
= −

√(
n(y)

n0 sin i0

)2

− 1

(B3) The laser beam is directed horizontally from the origin (0,0) into the sugar solution at a
height y0 from the bottom of the tank as shown. Take n(y) = n0 − ky where n0 and k
are positive constants. Obtain an expression for x in terms of y and related quantities.
You may use:

∫
sec θdθ = ln(sec θ + tan θ) + constant sec θ = 1/ cos θ or

∫
dx√
x2−1 =

ln(x+
√
x2 − 1) + constant. [1.2]

Solution: ∫
dy√

(
n0 − ky
n0 sin i0

)2 − 1

= −
∫
dx

Note i0 = 90o so sin i0 = 1.
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Method I We employ the substitution

ξ =
n0 − ky
n0∫ dξ(−n0

k
)√

ξ2 − 1
= −

∫
dx

Let ξ = sec θ. Then

n0

k
ln(sec θ + tan θ) = x+ c

Or METHOD II
We employ the substition

ξ =
n0 − ky
n0∫ dξ(−n0

k
)√

ξ2 − 1
= −

∫
dx

−n0

k
ln

(
n0 − ky
n0

+

√
(
n0 − ky
n0

)2 − 1

)
= −x+ c

Now continuing

Considering the substitutions and boundary condition, x = 0 for y = 0 we obtain that
the constant c = 0.
Hence we obtain the following trajectory:

x =
n0

k
ln

(
n0 − ky
n0

+

√
(
n0 − ky
n0

)2 − 1

)

(B4) Obtain the value of x0, the point where the beam meets the bottom of the tank. Take y0
= 10.0 cm, n0 = 1.50, k = 0.050 cm−1 (1 cm = 10−2 m). [0.8]

Solution:

Given y0 = 10.0 cm. n0 = 1.50 k = 0.050 cm−1

From (B3)

x0 =
n0

k
ln

(n0 − ky
n0

)
+

((
n0 − ky
n0

)2

− 1

)1/2


Here y = −y0
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x0 =
n0

k
ln

[
(n0 + ky0)

n0

+

(
(n0 + ky0)

2

n2
0

− 1

)1/2
]

= 30 ln

 2

1.5
+

((
2

1.5

)2

− 1

)1/2


= 30 ln

[
4

3
+

(
7

9

)1/2
]

= 30 ln

[
4

3
+ 0.88

]
= 24.0 cm

C. The Extremum Principle and the Wave Nature of Matter

We now explore between the PLA and the wave nature of a moving particle. For this we
assume that a particle moving from O to P can take all possible trajectories and we will seek
a trajectory that depends on the constructive interference of de Broglie waves.

(C1) As the particle moves along its trajectory by an infinitesimal distance ∆s, relate the change
∆φ in the phase of its de Broglie wave to the change ∆A in the action and the Planck
constant. [0.6]

Solution:

From the de Broglie hypothesis

λ→ λdB = h/mv

where λ is the de Broglie wavelength and the other symbols have their usual meaning

∆φ =
2π

λ
∆s

=
2π

h
mv∆s

=
2π∆A

h
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(C2)
Recall the problem from part A where the particle
traverses from O to P (see Fig. 4). Let an opaque
partition be placed at the boundary AB between the
two regions. There is a small opening CD of width
d in AB such that d� (x0 − x1) and d� x1.
Consider two extreme paths OCP and ODP such
that OCP lies on the classical trajectory discussed in
part A. Obtain the phase difference ∆φCD between
the two paths to first order.

Figure 4

[1.2]

Solution:

O

y

xx
1

F

θ

θ

1

2

E

A

B

D

C

III

P

Consider the extreme trajectories OCP and ODP of (C1)
The geometrical path difference is ED in region I and CF in region II.
This implies (note: d� (x0 − x1) and d� x1)

∆φCD =
2πd sin θ1

λ1
− 2πd sin θ2

λ2

∆φCD =
2πmv1d sin θ1

h
− 2πmv2d sin θ2

h

= 2π
md

h
(v1 sin θ1 − v2 sin θ2)

= 0 (from A2 or B1)

Thus near the clasical path there is invariably constructive interference.
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D. Matter Wave Interference

Consider an electron gun at O which di-
rects a collimated beam of electrons to a
narrow slit at F in the opaque partition
A1B1 at x = x1 such that OFP is a straight
line. P is a point on the screen at x = x0
(see Fig. 5). The speed in I is v1 = 2.0000
× 107 m s−1 and θ = 10.0000◦. The poten-
tial in region II is such that the speed v2 =
1.9900 × 107 m s−1. The distance x0 − x1
is 250.00 mm (1 mm = 10−3 m). Ignore
electron-electron interaction.

Figure 5

(D1) If the electrons at O have been accelerated from rest, calculate the accelerating potential
U1. [0.3]

Solution:

qU1 =
1

2
mv2

=
9.11× 10−31 × 4× 1014

2
J

= 2× 9.11× 10−17J

=
2× 9.11× 10−17

1.6× 10−19
eV

= 1.139× 103 eV (w 1100 eV )

U1 = 1.139× 103 V

(D2) Another identical slit G is made in the partition A1B1 at a distance of 215.00 nm (1 nm
= 10−9 m) below slit F (Fig. 5). If the phase difference between de Broglie waves ariving
at P from F and G is 2 π β, calculate β. [0.8]

Solution: Phase difference at P is

∆φP =
2πd sin θ

λ1
− 2πd sin θ

λ2

= 2π(v1 − v2)
md

h
sin 10◦ = 2πβ

β = 5.13
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(D3) What is is the smallest distance ∆y from P at which null (zero) electron detection maybe
expected on the screen? [Note: you may find the approximation sin(θ + ∆θ) ≈ sin θ +
∆θ cos θ useful] [1.2]

Solution:

B

y

xxO
1

G

F

215 nm

P

I

1

IIA
1

From previous part for null (zero) electron detection ∆φ = 5.5× 2π

∴ mv1
d sin θ

h
− mv2d sin(θ + ∆θ)

h
= 5.5

sin(θ + ∆θ) =

mv1d sin θ

h
− 5.5

mv2d

h

=
v1
v2

sin θ − h

m

5.5

v2d

=
2

1.99
sin 10◦ − 5.5

1374.78× 1.99× 107 ××2.15× 10−7

= 0.174521− 0.000935

This yields ∆θ = −0.0036◦

The closest distance to P is

∆y = (x0 − x1)(tan(θ + ∆θ)− tan θ)

= 250(tan 9.9964− tan 10)

= −0.0162mm

= −16.2µm

The negative sign means that the closest minimum is below P.

Approximate Calculation for θ and ∆y
Using the approximation sin(θ + ∆θ) ≈ sin θ + ∆θ cos θ
The phase difference of 5.5× 2π gives

mv1
d sin 10◦

h
−mv2

d(sin 10◦ + ∆θ cos 10◦)

h
= 5.5

From solution of the previous part

mv1
d sin 10◦

h
−mv2

dsin10◦

h
= 5.13
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Therefore

mv2
d∆θ cos 10◦

h
= 0.3700

This yields ∆θ ≈ 0.0036◦

∆y = −0.0162 mm = −16.2µm as before

(D4) The electron beam has a square cross section of 500 nm × 500 nm and the setup is 2 m
long. What should be the minimum beam flux density Imin (number of electrons per unit
normal area per unit time) if, on an average, there is at least one electron in the setup at
a given time? [0.4]

Solution: The product of the speed of the electrons and number of electron per unit
volume on an average yields the intensity.
Thus N = 1 = Intensity × Area × Length/ Electron Speed
= Imin × 0.25 × 10−12 × 2/2 × 107

This gives Imin = 4× 1019 m−2 s−1
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